{"title":"Genetic Programming: Semantic point mutation operator based on the partial derivative error","authors":"Mario Graff, J. Flores, Jose Ortiz Bejar","doi":"10.1109/ROPEC.2014.7036344","DOIUrl":null,"url":null,"abstract":"There is a great interest in the Genetic Programming (GP) community to develop semantic genetic operators. Most recent approaches includes the genetic programming framework for symbolic regression called Error Space Alignment GP, the geometric semantic operators, and our previous work the semantic crossover based on the partial derivative error. To the best of our knowledge, there has not been a semantic genetic operator similar to the point mutation. In this contribution, we start filling this gap by proposing a semantic point mutation based on the derivative of the error. This novel operator complements our previous semantic crossover and, as the results show, there is an improvement in performance when this novel operator is used, and, furthermore, the best performance in our setting is the system that uses the semantic crossover and the semantic point mutation.","PeriodicalId":357133,"journal":{"name":"2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2014.7036344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
There is a great interest in the Genetic Programming (GP) community to develop semantic genetic operators. Most recent approaches includes the genetic programming framework for symbolic regression called Error Space Alignment GP, the geometric semantic operators, and our previous work the semantic crossover based on the partial derivative error. To the best of our knowledge, there has not been a semantic genetic operator similar to the point mutation. In this contribution, we start filling this gap by proposing a semantic point mutation based on the derivative of the error. This novel operator complements our previous semantic crossover and, as the results show, there is an improvement in performance when this novel operator is used, and, furthermore, the best performance in our setting is the system that uses the semantic crossover and the semantic point mutation.