A property of equivalence

M. Newman
{"title":"A property of equivalence","authors":"M. Newman","doi":"10.6028/JRES.078B.011","DOIUrl":null,"url":null,"abstract":"Let R be a prin cipal id eal rin g. W e write A E B, if A and B a re matrices over R wh ich are equivale nt (see [1] for a co mple te di scussion of thi s topic). The Kronecke r product of any two matrices A and B will be de noted by A @ B. The follow in g res ult was s ugges ted by a re mark made by W. D. Wallis in hi s s urvey paper [2]: THEOREM: Suppose that K, A, Bare nonsinguLar matrices over R such that K @ A E K @ B. Then AEB. It is not actu ally necessary to assume that A and Bare nonsin gular , bu t doin g so simpljfies the exposi ti on. We firs t prove th e followin g: LEMMA: Suppose that the sets","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.078B.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let R be a prin cipal id eal rin g. W e write A E B, if A and B a re matrices over R wh ich are equivale nt (see [1] for a co mple te di scussion of thi s topic). The Kronecke r product of any two matrices A and B will be de noted by A @ B. The follow in g res ult was s ugges ted by a re mark made by W. D. Wallis in hi s s urvey paper [2]: THEOREM: Suppose that K, A, Bare nonsinguLar matrices over R such that K @ A E K @ B. Then AEB. It is not actu ally necessary to assume that A and Bare nonsin gular , bu t doin g so simpljfies the exposi ti on. We firs t prove th e followin g: LEMMA: Suppose that the sets
等价的一个性质
设R是一个主函数,如果a和B是R上相等的矩阵(参见[1]),则我们写a e B。任意两个矩阵A和B的Kronecke r积由A @ B表示,下面的结果由W. D. Wallis在他的论文[2]中所作的评论得到:定理:假设K, A, r上的裸露非奇异矩阵使得K @ AE K @ B,则AEB。实际上,没有必要假定A和Bare是非正则的,但是这样做可以简化说明。我们首先证明下面的引理:假设集合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信