Performance Evaluation of Various Training Algorithms for ANN Equalization in Visible Light Communications with an Organic LED

Zahra Nazari Chaleshtori, P. Haigh, P. Chvojka, S. Zvánovec, Zabih Ghassemlooy
{"title":"Performance Evaluation of Various Training Algorithms for ANN Equalization in Visible Light Communications with an Organic LED","authors":"Zahra Nazari Chaleshtori, P. Haigh, P. Chvojka, S. Zvánovec, Zabih Ghassemlooy","doi":"10.1109/WACOWC.2019.8770203","DOIUrl":null,"url":null,"abstract":"This paper evaluates the effect of training algorithms in an artificial neural network (ANN) equalizer for a feedforward multi-layer perceptron configuration in visible light communication systems using a low bandwidth organic light source. We test the scaled conjugate-gradient, conjugate-gradient backpropagation and Levenberg-Marquardt back propagation (LM) algorithms with 5, 10, 20, 30, and 40 neurons. We show that, LM offers superior bit error rate performance in comparison to other training algorithms based on the mean square error. The training methods can be selected based on the trade-off between complexity and performance.","PeriodicalId":375524,"journal":{"name":"2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACOWC.2019.8770203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper evaluates the effect of training algorithms in an artificial neural network (ANN) equalizer for a feedforward multi-layer perceptron configuration in visible light communication systems using a low bandwidth organic light source. We test the scaled conjugate-gradient, conjugate-gradient backpropagation and Levenberg-Marquardt back propagation (LM) algorithms with 5, 10, 20, 30, and 40 neurons. We show that, LM offers superior bit error rate performance in comparison to other training algorithms based on the mean square error. The training methods can be selected based on the trade-off between complexity and performance.
有机LED可见光通信中各种神经网络均衡训练算法的性能评价
本文评估了人工神经网络均衡器中训练算法对使用低带宽有机光源的可见光通信系统中前馈多层感知器配置的效果。我们用5、10、20、30和40个神经元测试了缩放共轭梯度、共轭梯度反向传播和Levenberg-Marquardt反向传播(LM)算法。我们表明,与其他基于均方误差的训练算法相比,LM提供了优越的误码率性能。可以根据复杂度和性能之间的权衡来选择训练方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信