Efficient Online Calibration for Autonomous Vehicle’s Longitudinal Dynamical System: A Gaussian Model Approach

Shihao Wang, Canqiang Deng, Q. Qi
{"title":"Efficient Online Calibration for Autonomous Vehicle’s Longitudinal Dynamical System: A Gaussian Model Approach","authors":"Shihao Wang, Canqiang Deng, Q. Qi","doi":"10.1109/ICRA48506.2021.9560912","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient online calibration system for longitudinal vehicle dynamics of driverless cars. Instead of modeling vehicle’s longitudinal dynamical system analytically, we employ a data-driven method to generate an \"end-to-end\" numerical model with a look-up table which saves vehicle’s velocity, control command, and acceleration. This reference table should be calibrated to account for variations of vehicle’s hardware status over time. To reduce the expensive labor in calibration process, we propose an effective algorithm to update this reference look-up table with a Gaussian model approach. We introduce a 2-D Gaussian distribution to model acceleration error between interpolated one from look-up table and actual one from vehicle sensors. We estimate model’s standard deviations with a \"three-sigma rule\" heuristic and calculate its height with a backtracking method such that monotonicity constraint between acceleration and control command is strictly satisfied in the updated table. The effectiveness of our proposed system is verified in realworld road tests with Lincoln MKZ.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9560912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an efficient online calibration system for longitudinal vehicle dynamics of driverless cars. Instead of modeling vehicle’s longitudinal dynamical system analytically, we employ a data-driven method to generate an "end-to-end" numerical model with a look-up table which saves vehicle’s velocity, control command, and acceleration. This reference table should be calibrated to account for variations of vehicle’s hardware status over time. To reduce the expensive labor in calibration process, we propose an effective algorithm to update this reference look-up table with a Gaussian model approach. We introduce a 2-D Gaussian distribution to model acceleration error between interpolated one from look-up table and actual one from vehicle sensors. We estimate model’s standard deviations with a "three-sigma rule" heuristic and calculate its height with a backtracking method such that monotonicity constraint between acceleration and control command is strictly satisfied in the updated table. The effectiveness of our proposed system is verified in realworld road tests with Lincoln MKZ.
自动驾驶汽车纵向动力系统的有效在线标定:高斯模型方法
本文提出了一种高效的无人驾驶汽车纵向动力学在线标定系统。本文采用数据驱动的方法生成端到端的数值模型,而不是对车辆的纵向动力系统进行解析建模,该模型带有查找表,可以保存车辆的速度、控制命令和加速度。此参考表应经过校准,以考虑车辆硬件状态随时间的变化。为了减少校准过程中昂贵的人工,我们提出了一种有效的基于高斯模型的参考表更新算法。我们引入二维高斯分布来模拟从查找表中插值得到的加速度误差和从车辆传感器中得到的实际加速度误差。我们用“三西格玛规则”启发式估计模型的标准差,用回溯法计算模型的高度,使更新后的表严格满足加速度和控制命令之间的单调性约束。我们所提出的系统的有效性在林肯MKZ的实际道路测试中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信