Hole mobility in InSb-based devices: Dependency on surface orientation, body thickness and strain

P. Chang, L. Zeng, Xiaoyan Liu, G. Du
{"title":"Hole mobility in InSb-based devices: Dependency on surface orientation, body thickness and strain","authors":"P. Chang, L. Zeng, Xiaoyan Liu, G. Du","doi":"10.1109/ESSDERC.2014.6948773","DOIUrl":null,"url":null,"abstract":"This work presents an investigation on hole mobility in InSb-based ultra-thin body (UTB) devices with arbitrary surface orientation, body thickness and biaxial strain. The anisotropic band structures with quantum confinement are computed using a fully self-consistent solver for six-band k·p Schrödinger and Poisson equations. Hole mobility is computed using the Kubo-Greenwood formalism accounting for nonpolar acoustic and optical phonons, polar optical phonons and surface roughness scattering. The models are calibrated by fitting the experimental data. Our results suggest that for TB<;10nm, mobility trend with surface orientation and channel directions for InSb devices is: (110)/[T10]>(111)>(110)/[001]>(001), where devices with (111) have more excellent behavior than for Si. In addition, biaxial compressive strain introduces maximum mobility gain in the (110)/[110] case. Nevertheless, (110)/[110] is the optimal surface and channel direction for InSb-based UTB devices, followed by (111) orientation.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work presents an investigation on hole mobility in InSb-based ultra-thin body (UTB) devices with arbitrary surface orientation, body thickness and biaxial strain. The anisotropic band structures with quantum confinement are computed using a fully self-consistent solver for six-band k·p Schrödinger and Poisson equations. Hole mobility is computed using the Kubo-Greenwood formalism accounting for nonpolar acoustic and optical phonons, polar optical phonons and surface roughness scattering. The models are calibrated by fitting the experimental data. Our results suggest that for TB<;10nm, mobility trend with surface orientation and channel directions for InSb devices is: (110)/[T10]>(111)>(110)/[001]>(001), where devices with (111) have more excellent behavior than for Si. In addition, biaxial compressive strain introduces maximum mobility gain in the (110)/[110] case. Nevertheless, (110)/[110] is the optimal surface and channel direction for InSb-based UTB devices, followed by (111) orientation.
insb基器件的孔迁移率:依赖于表面取向、本体厚度和应变
本文研究了具有任意表面取向、体厚和双轴应变的insb基超薄体(UTB)器件中的空穴迁移率。利用六波段k·p Schrödinger和泊松方程的完全自相容求解器计算了具有量子约束的各向异性带结构。利用Kubo-Greenwood形式计算空穴迁移率,考虑非极性声子和光学声子、极性光学声子和表面粗糙度散射。通过拟合实验数据对模型进行了标定。我们的结果表明,对于TB(111)>(110)/[001]>(001),其中(111)的器件比Si的器件具有更好的性能。此外,在(110)/[110]的情况下,双轴压缩应变会带来最大的迁移率增益。然而,(110)/[110]是基于insb的UTB设备的最佳表面和通道方向,其次是(111)方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信