Tailoring interfacial oxide for polysilicon bit-cell contacts and emitters with in situ vapor HF interface cleaning and polysilicon deposition in a 4 Mbit BiCMOS fast static RAM
Fred Walczyk, Craig Lage, Vidya Kaushik, Mike Blackwell
{"title":"Tailoring interfacial oxide for polysilicon bit-cell contacts and emitters with in situ vapor HF interface cleaning and polysilicon deposition in a 4 Mbit BiCMOS fast static RAM","authors":"Fred Walczyk, Craig Lage, Vidya Kaushik, Mike Blackwell","doi":"10.1109/BIPOL.1992.274078","DOIUrl":null,"url":null,"abstract":"A cluster-tool-based technique for in situ vapor HF cleaning, ultrathin oxide growth and polysilicon deposition is compared to conventional processing in forming polysilicon emitters and polysilicon bit-cell contacts in a 4-Mb/0.5- mu m BiCMOS fast static RAM (FSRAM) process. The in situ processing techniques involve removing native oxide with vapor HF, optionally growing several monolayers of thermal interfacial oxide and depositing a polysilicon film using a load-locked multichamber cluster tool. The authors have examined the capability of this process for producing low bit-cell contact resistance while tailoring bipolar gain through the use of a thin interfacial oxide. Results are reported which indicate that the control achieved with cluster tool processing provides greater flexibility in simultaneously optimizing the performance of the polysilicon emitters and bit-cell contacts.<<ETX>>","PeriodicalId":286222,"journal":{"name":"Proceedings of the 1992 Bipolar/BiCMOS Circuits and Technology Meeting","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1992 Bipolar/BiCMOS Circuits and Technology Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIPOL.1992.274078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A cluster-tool-based technique for in situ vapor HF cleaning, ultrathin oxide growth and polysilicon deposition is compared to conventional processing in forming polysilicon emitters and polysilicon bit-cell contacts in a 4-Mb/0.5- mu m BiCMOS fast static RAM (FSRAM) process. The in situ processing techniques involve removing native oxide with vapor HF, optionally growing several monolayers of thermal interfacial oxide and depositing a polysilicon film using a load-locked multichamber cluster tool. The authors have examined the capability of this process for producing low bit-cell contact resistance while tailoring bipolar gain through the use of a thin interfacial oxide. Results are reported which indicate that the control achieved with cluster tool processing provides greater flexibility in simultaneously optimizing the performance of the polysilicon emitters and bit-cell contacts.<>