New wrapper method based on normalized mutual information for dimension reduction and classification of hyperspectral images

H. Nhaila, Asma Elmaizi, E. Sarhrouni, A. Hammouch
{"title":"New wrapper method based on normalized mutual information for dimension reduction and classification of hyperspectral images","authors":"H. Nhaila, Asma Elmaizi, E. Sarhrouni, A. Hammouch","doi":"10.1109/ICOA.2018.8370546","DOIUrl":null,"url":null,"abstract":"Feature selection is one of the most important problems in hyperspectral images classification. It consists to choose the most informative bands from the entire set of input datasets and discard the noisy, redundant and irrelevant ones. In this context, we propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE) using support vector machine (SVM) to reduce the dimensionality of the used hyperspectral images and increase the classification efficiency. The experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS). Several metrics had been calculated to evaluate the performance of the proposed algorithm. The obtained results prove that our method can increase the classification performance and provide an accurate thematic map in comparison with other reproduced algorithms. This method may be improved for more classification efficiency.","PeriodicalId":433166,"journal":{"name":"2018 4th International Conference on Optimization and Applications (ICOA)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA.2018.8370546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Feature selection is one of the most important problems in hyperspectral images classification. It consists to choose the most informative bands from the entire set of input datasets and discard the noisy, redundant and irrelevant ones. In this context, we propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE) using support vector machine (SVM) to reduce the dimensionality of the used hyperspectral images and increase the classification efficiency. The experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS). Several metrics had been calculated to evaluate the performance of the proposed algorithm. The obtained results prove that our method can increase the classification performance and provide an accurate thematic map in comparison with other reproduced algorithms. This method may be improved for more classification efficiency.
基于归一化互信息的高光谱图像降维分类包装新方法
特征选择是高光谱图像分类中的一个重要问题。它包括从整个输入数据集中选择信息量最大的频带,丢弃有噪声的、冗余的和不相关的频带。在此背景下,我们提出了一种基于归一化互信息(NMI)和误差概率(PE)的支持向量机(SVM)包装方法,以降低所使用的高光谱图像的维数,提高分类效率。实验是在NASA机载可见/红外成像光谱仪传感器(AVIRIS)捕获的两个具有挑战性的高光谱基准数据集上进行的。计算了几个指标来评估所提出算法的性能。结果表明,与其他复制算法相比,我们的方法可以提高分类性能,并提供准确的主题图。该方法可进一步改进,以提高分类效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信