Students' behavior on social media sites — A data mining approach

Grljevic Olivera, Bosnjak Zita, B. Sasa
{"title":"Students' behavior on social media sites — A data mining approach","authors":"Grljevic Olivera, Bosnjak Zita, B. Sasa","doi":"10.1109/SISY.2013.6662600","DOIUrl":null,"url":null,"abstract":"Data preparation is crucial for the validity of the resulting data model and its subsequent successful application. The paper presents a preprocessing of the data on the behavior of students on social media sites using the CRISP-DM methodology. Data was collected through questioner shared among prospect students of Faculty of Economics Subotica. This has created an adequate platform for the implementation of different intelligent methods. This paper illustrates the application of clustering techniques to these data in order to identify specific profiles and patterns of student behavior on social media sites.","PeriodicalId":187088,"journal":{"name":"2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2013.6662600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data preparation is crucial for the validity of the resulting data model and its subsequent successful application. The paper presents a preprocessing of the data on the behavior of students on social media sites using the CRISP-DM methodology. Data was collected through questioner shared among prospect students of Faculty of Economics Subotica. This has created an adequate platform for the implementation of different intelligent methods. This paper illustrates the application of clustering techniques to these data in order to identify specific profiles and patterns of student behavior on social media sites.
学生在社交媒体网站上的行为——一种数据挖掘方法
数据准备对于生成的数据模型的有效性及其随后的成功应用至关重要。本文介绍了使用CRISP-DM方法对学生在社交媒体网站上的行为数据进行预处理。数据是通过在苏博蒂察经济学院的未来学生中分享提问来收集的。这为实现不同的智能方法创造了一个适当的平台。本文阐述了聚类技术对这些数据的应用,以识别社交媒体网站上学生行为的具体概况和模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信