Hybrid Precoding for Massive MIMO Systems Using Partially-Connected Phase Shifter Network

Yimeng Feng, Yi Jiang
{"title":"Hybrid Precoding for Massive MIMO Systems Using Partially-Connected Phase Shifter Network","authors":"Yimeng Feng, Yi Jiang","doi":"10.1109/WCSP.2019.8927851","DOIUrl":null,"url":null,"abstract":"In recent years, there have been extensive researches on hybrid precoding for massive MIMO to achieve huge spectral efficiency with reasonable cost and power consumption. In this paper we consider a partially-connected phase shifter network (PSN) scenario where each antenna is only connected to one radio frequency (RF) chain, leading to much reduced hardware complexity. We then propose a new algorithm for maximizing the spectral efficiency given the hardware constraints, which we refer to as the universal hybrid precoding (UHP) algorithm for partially-connected (PC) network, or UHP-PC. Compared with the existing work, the UHP-PC algorithm is advantageous in that i) it has a significantly better performance than state-of-the-art and ii) it can deal with variable phase shifters with finite or infinite resolutions. The simulation results verify that using the proposed algorithm the performance loss of a partially-connected PSN compared to the (unrealistic) fully-digital system is moderate, despite the vastly reduced hardware complexity.","PeriodicalId":108635,"journal":{"name":"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2019.8927851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, there have been extensive researches on hybrid precoding for massive MIMO to achieve huge spectral efficiency with reasonable cost and power consumption. In this paper we consider a partially-connected phase shifter network (PSN) scenario where each antenna is only connected to one radio frequency (RF) chain, leading to much reduced hardware complexity. We then propose a new algorithm for maximizing the spectral efficiency given the hardware constraints, which we refer to as the universal hybrid precoding (UHP) algorithm for partially-connected (PC) network, or UHP-PC. Compared with the existing work, the UHP-PC algorithm is advantageous in that i) it has a significantly better performance than state-of-the-art and ii) it can deal with variable phase shifters with finite or infinite resolutions. The simulation results verify that using the proposed algorithm the performance loss of a partially-connected PSN compared to the (unrealistic) fully-digital system is moderate, despite the vastly reduced hardware complexity.
基于部分连接移相器网络的大规模MIMO系统混合预编码
为了在合理的成本和功耗下实现巨大的频谱效率,近年来对大规模MIMO的混合预编码进行了广泛的研究。在本文中,我们考虑了部分连接移相器网络(PSN)场景,其中每个天线仅连接到一个射频(RF)链,从而大大降低了硬件复杂性。然后,我们提出了一种新的算法来最大化给定硬件约束的频谱效率,我们称之为部分连接(PC)网络的通用混合预编码(UHP)算法,或UHP-PC。与现有工作相比,UHP-PC算法的优势在于:1)性能明显优于现有算法;2)可以处理有限或无限分辨率的可变移相器。仿真结果证实,尽管硬件复杂度大大降低,但与(不切实际的)全数字系统相比,使用该算法的部分连接PSN的性能损失是适度的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信