Performance prediction for RNA design using parametric and non-parametric regression models

D. C. Dai, K. Wiese
{"title":"Performance prediction for RNA design using parametric and non-parametric regression models","authors":"D. C. Dai, K. Wiese","doi":"10.1109/CIBCB.2009.4925702","DOIUrl":null,"url":null,"abstract":"Empirical algorithm study involves tuning various parameter settings in order to achieve an optimal performance. It is also experimentally known that algorithm performance varies across problem instances. In stochastic local search (metaheuristics) paradigm, search efficiency is correlated to the empirical hardness of the underlying combinatorial optimization problem itself. Therefore, investigating these correlations are of crucial importance towards the design of robust algorithmic solutions. To achieve this goal, an accurate prediction of algorithm performance is a prerequisite, since it allows an automatic tuning of parameter settings on a perproblem base. In this work, we investigate using parametric & non-parametric regression models for algorithm performance prediction for the RNA Secondary Structure Design problem (SSD). Empirical results show our non-parametric methods achieve a higher prediction accuracy on biologically existing data, where biological data exhibits a higher degree of local similarity among individual instances. We also found that using a non-parametric regression tree model (CART) provides insight into studying the empirical hardness of solving the SSD problem.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Empirical algorithm study involves tuning various parameter settings in order to achieve an optimal performance. It is also experimentally known that algorithm performance varies across problem instances. In stochastic local search (metaheuristics) paradigm, search efficiency is correlated to the empirical hardness of the underlying combinatorial optimization problem itself. Therefore, investigating these correlations are of crucial importance towards the design of robust algorithmic solutions. To achieve this goal, an accurate prediction of algorithm performance is a prerequisite, since it allows an automatic tuning of parameter settings on a perproblem base. In this work, we investigate using parametric & non-parametric regression models for algorithm performance prediction for the RNA Secondary Structure Design problem (SSD). Empirical results show our non-parametric methods achieve a higher prediction accuracy on biologically existing data, where biological data exhibits a higher degree of local similarity among individual instances. We also found that using a non-parametric regression tree model (CART) provides insight into studying the empirical hardness of solving the SSD problem.
基于参数和非参数回归模型的RNA设计性能预测
经验算法研究涉及到调整各种参数设置以达到最优性能。实验也知道算法的性能在不同的问题实例中是不同的。在随机局部搜索(元启发式)范式中,搜索效率与底层组合优化问题本身的经验硬度相关。因此,研究这些相关性对于设计鲁棒算法解决方案至关重要。为了实现这一目标,对算法性能的准确预测是一个先决条件,因为它允许在每个问题的基础上自动调整参数设置。在这项工作中,我们研究了使用参数和非参数回归模型来预测RNA二级结构设计问题(SSD)的算法性能。实验结果表明,我们的非参数方法对生物现有数据具有较高的预测精度,其中生物数据在个体实例之间表现出较高的局部相似性。我们还发现,使用非参数回归树模型(CART)为研究解决SSD问题的经验硬度提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信