Predicting and considering properties of general polymers using incomplete dataset

Hitoshi Yamano, Hiroaki Shimizu, S. Kanaya, Tomoyuki Miyao, Aki Hirai, N. Ono
{"title":"Predicting and considering properties of general polymers using incomplete dataset","authors":"Hitoshi Yamano, Hiroaki Shimizu, S. Kanaya, Tomoyuki Miyao, Aki Hirai, N. Ono","doi":"10.1109/ISSM51728.2020.9377497","DOIUrl":null,"url":null,"abstract":"Polymer properties are usually more difficult to predict than those of small molecules due to them forming superstructures. In this work, we aimed at finding a versatile approach to predict multiple polymer properties using imperfect data with missing values. The dataset was hierarchically clustered on the basis of two independent factors: polymer properties and polymer structures. In polymer property-based clustering, visualizing relations of polymers was found to be an effective way of estimating the difficulty of polymer property prediction. In polymer structure-based clustering, each cluster could be formed based on the structural features. Thus, the clustering contributed to understanding structural characteristics of monomer unit structures. In addition to analyzing the data set in an unsupervised manner, we constructed polymer properties prediction models based solely on the information of monomer unit structures. Partial least squared (PLS) regression models could predict density, glass transition temperature and dissolution parameter with high accuracy. We also propose approach to evaluate obtained model using data already prepared.","PeriodicalId":270309,"journal":{"name":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM51728.2020.9377497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Polymer properties are usually more difficult to predict than those of small molecules due to them forming superstructures. In this work, we aimed at finding a versatile approach to predict multiple polymer properties using imperfect data with missing values. The dataset was hierarchically clustered on the basis of two independent factors: polymer properties and polymer structures. In polymer property-based clustering, visualizing relations of polymers was found to be an effective way of estimating the difficulty of polymer property prediction. In polymer structure-based clustering, each cluster could be formed based on the structural features. Thus, the clustering contributed to understanding structural characteristics of monomer unit structures. In addition to analyzing the data set in an unsupervised manner, we constructed polymer properties prediction models based solely on the information of monomer unit structures. Partial least squared (PLS) regression models could predict density, glass transition temperature and dissolution parameter with high accuracy. We also propose approach to evaluate obtained model using data already prepared.
利用不完全数据集预测和考虑一般聚合物的性质
聚合物的性质通常比小分子更难预测,因为它们形成超结构。在这项工作中,我们的目标是找到一种通用的方法来预测多种聚合物的性质,使用缺失值的不完美数据。基于两个独立的因素:聚合物性质和聚合物结构,对数据集进行分层聚类。在基于聚合物性能的聚类中,聚合物的可视化关系是估计聚合物性能预测难度的有效方法。在基于聚合物结构的聚类中,可以根据聚合物的结构特征来形成簇。因此,聚类有助于理解单体单元结构的结构特征。除了以无监督的方式分析数据集外,我们还构建了仅基于单体单元结构信息的聚合物性能预测模型。偏最小二乘(PLS)回归模型可以较准确地预测密度、玻璃化转变温度和溶解参数。我们还提出了利用已经准备好的数据来评估得到的模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信