Searching for informative intervals in predominantly stationary data records to support system identification

David Arengas, A. Kroll
{"title":"Searching for informative intervals in predominantly stationary data records to support system identification","authors":"David Arengas, A. Kroll","doi":"10.1109/ICAT.2017.8171617","DOIUrl":null,"url":null,"abstract":"Performing experiments for system identification is prohibitive in some processes due to restrictions in production or due to requirements for a safe operation. In such situations, system identification with historical data records can become a suitable alternative. Nonetheless, these data records are mainly stationary because few transient changes occur. Thus, the available data records can be considered “little” informative and the model quality may be affected using these data sets. In this contribution, a novel search method to find informative data in large mostly stationary data sets is presented. In contrast to available search methods, independent moving windows are used to screen the data and detect transient changes. The performance of the proposed method is demonstrated on case studies. Results demonstrate that parameter biases of a selected model decrease and small changes in variances of the parameters are observed using the selected subset for parameter estimation.","PeriodicalId":112404,"journal":{"name":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2017.8171617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Performing experiments for system identification is prohibitive in some processes due to restrictions in production or due to requirements for a safe operation. In such situations, system identification with historical data records can become a suitable alternative. Nonetheless, these data records are mainly stationary because few transient changes occur. Thus, the available data records can be considered “little” informative and the model quality may be affected using these data sets. In this contribution, a novel search method to find informative data in large mostly stationary data sets is presented. In contrast to available search methods, independent moving windows are used to screen the data and detect transient changes. The performance of the proposed method is demonstrated on case studies. Results demonstrate that parameter biases of a selected model decrease and small changes in variances of the parameters are observed using the selected subset for parameter estimation.
在主要固定的数据记录中搜索信息间隔以支持系统识别
由于生产的限制或安全操作的要求,在某些过程中禁止进行系统识别实验。在这种情况下,使用历史数据记录进行系统标识可以成为一种合适的替代方法。尽管如此,这些数据记录主要是平稳的,因为很少发生瞬态变化。因此,可用的数据记录可以被认为信息量“很小”,使用这些数据集可能会影响模型质量。在这篇贡献中,提出了一种新的搜索方法来查找大型平稳数据集中的信息数据。与现有的搜索方法相比,独立的移动窗口用于筛选数据并检测瞬态变化。通过实例验证了该方法的有效性。结果表明,使用所选的子集进行参数估计,所选模型的参数偏差减小,参数方差的变化很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信