Learning-based Motion Stabilizer Leveraging Offline Temporal Optimization

M. Ahn, Hosik Chae, Colin Togashi, D. Hong, Joohyung Kim, Sungjoon Choi
{"title":"Learning-based Motion Stabilizer Leveraging Offline Temporal Optimization","authors":"M. Ahn, Hosik Chae, Colin Togashi, D. Hong, Joohyung Kim, Sungjoon Choi","doi":"10.1109/ur55393.2022.9826279","DOIUrl":null,"url":null,"abstract":"During loco-manipulation, instabilities to the robot’s base can be introduced by the manipulator’s motions. Trajectories that are generated on-the-fly may jeopardize the stability and safety of the robot and its surroundings. This work proposes a self-supervised learning-based pipeline to keep a robot stable while executing a given trajectory. Empirical results show that the desired objective can be achieved with the proposed pipeline. Experiments are done in simulation and on hardware on a unique multi-modal, manipulation-capable legged robot, and its scalability is tested on a conventional manipulator.","PeriodicalId":398742,"journal":{"name":"2022 19th International Conference on Ubiquitous Robots (UR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ur55393.2022.9826279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During loco-manipulation, instabilities to the robot’s base can be introduced by the manipulator’s motions. Trajectories that are generated on-the-fly may jeopardize the stability and safety of the robot and its surroundings. This work proposes a self-supervised learning-based pipeline to keep a robot stable while executing a given trajectory. Empirical results show that the desired objective can be achieved with the proposed pipeline. Experiments are done in simulation and on hardware on a unique multi-modal, manipulation-capable legged robot, and its scalability is tested on a conventional manipulator.
利用离线时间优化的基于学习的运动稳定器
在局部操纵过程中,机械手的运动会引起机器人基座的不稳定性。在飞行中产生的轨迹可能会危及机器人及其周围环境的稳定性和安全性。这项工作提出了一种基于自监督学习的管道,以保持机器人在执行给定轨迹时的稳定。实验结果表明,所提出的管道可以达到预期的目标。在一种独特的多模态、可操作的腿式机器人上进行了仿真实验和硬件实验,并在传统机械臂上进行了可扩展性测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信