When Finite-Region Stability Meets Iterative Learning Control

Chao Liang, C. Cosentino, A. Merola, Maria Romano, Francesco Amato
{"title":"When Finite-Region Stability Meets Iterative Learning Control","authors":"Chao Liang, C. Cosentino, A. Merola, Maria Romano, Francesco Amato","doi":"10.1109/rtsi50628.2021.9597283","DOIUrl":null,"url":null,"abstract":"Some recent papers have extended the concept of finite-time stability (FTS) to the context of 2-D linear systems, where it has been referred to as finite-region stability (FRS). To this regard, the novel contribution of our work considers an interesting application of FRS to the context of iterative learning control (ILC). In particular, a new procedure is proposed so that the tracking error of the ILC law converges within the desired bound in a finite number of iterations. The results provided in the paper lead to an optimization problem constrained by linear matrix inequalities (LMIs), that can be solved via widely available software. A numerical example illustrates the effectiveness of the proposed technique.","PeriodicalId":294628,"journal":{"name":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtsi50628.2021.9597283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Some recent papers have extended the concept of finite-time stability (FTS) to the context of 2-D linear systems, where it has been referred to as finite-region stability (FRS). To this regard, the novel contribution of our work considers an interesting application of FRS to the context of iterative learning control (ILC). In particular, a new procedure is proposed so that the tracking error of the ILC law converges within the desired bound in a finite number of iterations. The results provided in the paper lead to an optimization problem constrained by linear matrix inequalities (LMIs), that can be solved via widely available software. A numerical example illustrates the effectiveness of the proposed technique.
有限区域稳定性与迭代学习控制的关系
最近的一些论文将有限时间稳定性(FTS)的概念扩展到二维线性系统,在那里它被称为有限区域稳定性(FRS)。在这方面,我们工作的新颖贡献考虑了FRS在迭代学习控制(ILC)背景下的有趣应用。特别地,提出了一种新的方法,使ILC律的跟踪误差在有限次迭代中收敛在期望的范围内。本文提供的结果导致了一个由线性矩阵不等式约束的优化问题,该问题可以通过广泛使用的软件来解决。数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信