{"title":"Variable-resolution velocity roadmap generation considering safety constraints for mobile robots","authors":"J. Xiang, Y. Tazaki, Tatsuya Suzuki, B. Levedahl","doi":"10.1109/ROBIO.2012.6491075","DOIUrl":null,"url":null,"abstract":"This research develops a new roadmap method for autonomous mobile robots based on variable-resolution partitioning of a continuous state space. Unlike conventional roadmaps, which include position information only, the proposed roadmap also includes velocity information. Each node of the proposed roadmap consists of a fixed position and a range of velocity values, where the velocity ranges are determined by variable-resolution partitioning of the velocity space. An ordered pair of nodes is connected by a directed link if any combination of their velocity values is within the acceptable range of the nodes and produces a trajectory satisfying a set of safety constraints. In this manner, a possible trajectory connecting an arbitrary starting node and destination node is obtained by applying a graph search technique on the proposed roadmap. The proposed method is evaluated through simulations.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This research develops a new roadmap method for autonomous mobile robots based on variable-resolution partitioning of a continuous state space. Unlike conventional roadmaps, which include position information only, the proposed roadmap also includes velocity information. Each node of the proposed roadmap consists of a fixed position and a range of velocity values, where the velocity ranges are determined by variable-resolution partitioning of the velocity space. An ordered pair of nodes is connected by a directed link if any combination of their velocity values is within the acceptable range of the nodes and produces a trajectory satisfying a set of safety constraints. In this manner, a possible trajectory connecting an arbitrary starting node and destination node is obtained by applying a graph search technique on the proposed roadmap. The proposed method is evaluated through simulations.