Shape-Based Volumetric Collision Detection

N. Gagvani, D. Silver
{"title":"Shape-Based Volumetric Collision Detection","authors":"N. Gagvani, D. Silver","doi":"10.1145/353888.353899","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a method to detect collisions between volumetric objects. A hierarchy of bounding spheres is computed from a volumetric object based on the distance transform. Multiple levels of bounding approximations to the volumetric object are automatically computed. The computation of bounding spheres is based on the shape of the object. Only those spheres which are essential to the description of the shape at a certain level of detail are included. This results in a tighter fitting bounding volume compared to existing methods for collision detection. Because of the tighter fit, we are able to use fewer spheres for collision testing at each level, thus decreasing computation time. Since our method is based on the shape of the object, the hierarchical spheres are determined for the first frame and can then animate along with the volumetric object.","PeriodicalId":189891,"journal":{"name":"2000 IEEE Symposium on Volume Visualization (VV 2000)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Symposium on Volume Visualization (VV 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/353888.353899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this paper, we describe a method to detect collisions between volumetric objects. A hierarchy of bounding spheres is computed from a volumetric object based on the distance transform. Multiple levels of bounding approximations to the volumetric object are automatically computed. The computation of bounding spheres is based on the shape of the object. Only those spheres which are essential to the description of the shape at a certain level of detail are included. This results in a tighter fitting bounding volume compared to existing methods for collision detection. Because of the tighter fit, we are able to use fewer spheres for collision testing at each level, thus decreasing computation time. Since our method is based on the shape of the object, the hierarchical spheres are determined for the first frame and can then animate along with the volumetric object.
基于形状的体积碰撞检测
在本文中,我们描述了一种检测体积物体之间碰撞的方法。从基于距离变换的体积对象计算边界球体的层次结构。自动计算体积对象的多个级别的边界近似。边界球的计算是基于物体的形状。只有那些在一定程度上对形状描述必不可少的球体才被包括在内。与现有的碰撞检测方法相比,这导致了更紧密的拟合边界体积。由于更紧密的配合,我们能够在每个级别使用更少的球体进行碰撞测试,从而减少计算时间。由于我们的方法是基于对象的形状,因此第一帧确定了分层球体,然后可以与体积对象一起动画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信