S. Fichtner, Georg Schönweger, Frank Dietz, H. Hanssen, Heiko Züge, Tom-Niklas Kreutzer, F. Lofink, H. Kohlstedt, H. Kapels, M. Mensing
{"title":"Wurtzite-Type Ferroelectrics for Microelectronic Devices: Scalability and Integration to Silicon based Ferroelectric FETs","authors":"S. Fichtner, Georg Schönweger, Frank Dietz, H. Hanssen, Heiko Züge, Tom-Niklas Kreutzer, F. Lofink, H. Kohlstedt, H. Kapels, M. Mensing","doi":"10.1109/EDTM55494.2023.10103080","DOIUrl":null,"url":null,"abstract":"This paper reports on the scalability of the new wurtzite-type ferroelectrics between 500 and 10 nm thickness by investigating $\\mathrm{A}1_{1-\\mathrm{x}}\\text{Sc}_{\\mathrm{x}}\\mathrm{N}$ films. Unlike in most other ferroelectrics, no pronounced dependence between coercive field and film thickness was observed, therefore allowing operation below 3 V at 10 nm thickness. Together with our parallel success in fabricating the first wurtzite-type based Si FeFET, this is an important building block for developing advanced integrated electronic devices utilizing this novel material class.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10103080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports on the scalability of the new wurtzite-type ferroelectrics between 500 and 10 nm thickness by investigating $\mathrm{A}1_{1-\mathrm{x}}\text{Sc}_{\mathrm{x}}\mathrm{N}$ films. Unlike in most other ferroelectrics, no pronounced dependence between coercive field and film thickness was observed, therefore allowing operation below 3 V at 10 nm thickness. Together with our parallel success in fabricating the first wurtzite-type based Si FeFET, this is an important building block for developing advanced integrated electronic devices utilizing this novel material class.