Deteksi Peluang Gagal Bayar Calon Debitur Menggunakan Algoritma Particle Swarm Optimization (PSO) untuk Meningkatkan Kinerja Manajemen Risiko pada Koperasi Simpan Pinjam ABC

S. Purnama, Aninditha Putri Kusumawardhani
{"title":"Deteksi Peluang Gagal Bayar Calon Debitur Menggunakan Algoritma Particle Swarm Optimization (PSO) untuk Meningkatkan Kinerja Manajemen Risiko pada Koperasi Simpan Pinjam ABC","authors":"S. Purnama, Aninditha Putri Kusumawardhani","doi":"10.15575/kubik.v6i2.13835","DOIUrl":null,"url":null,"abstract":"logistik. logistik, parameter logistik Abstract Savings and Loan Cooperatives (KSP) are financial institutions that have an important role in economic and trade activities, useful for channeling funds in the form of loans to members who need them for business or business. In this paper, we examine the detection of potential debtors' default opportunities using the Particle Swarm Optimization (PSO) algorithm in a logistic regression model. In the analysis method, there are several steps: (1) standardizing the data on the risk factor data of prospective debtors, (2) determining the assumptions of the logistic regression model, (3) estimating the parameters of the logistic regression model using the Particle Swarm Optimization (PSO) algorithm, and (4 ) to test the significance of each variable. The probability of default is determined using the eligibility parameters of the prospective debtor based on past data variables owned by KSP \"ABC\" in Bandung, Indonesia. The results show that of the eight factors analyzed, there are six factors that have a significant influence on the risk of default, namely the age of the debtor, the number of family dependents, the amount of savings, the amount of collateral, the amount of credit, the credit period with an accuracy of 99.1%. Based on these six factors, a logistic regression model estimator is obtained that can be used to determine the probability of default from prospective debtors. This probability of default is very useful for KSP \"ABC\" to make a decision on whether or not to give credit, so that the performance of problem loan risk management can be guaranteed.","PeriodicalId":300313,"journal":{"name":"Kubik: Jurnal Publikasi Ilmiah Matematika","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kubik: Jurnal Publikasi Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/kubik.v6i2.13835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

logistik. logistik, parameter logistik Abstract Savings and Loan Cooperatives (KSP) are financial institutions that have an important role in economic and trade activities, useful for channeling funds in the form of loans to members who need them for business or business. In this paper, we examine the detection of potential debtors' default opportunities using the Particle Swarm Optimization (PSO) algorithm in a logistic regression model. In the analysis method, there are several steps: (1) standardizing the data on the risk factor data of prospective debtors, (2) determining the assumptions of the logistic regression model, (3) estimating the parameters of the logistic regression model using the Particle Swarm Optimization (PSO) algorithm, and (4 ) to test the significance of each variable. The probability of default is determined using the eligibility parameters of the prospective debtor based on past data variables owned by KSP "ABC" in Bandung, Indonesia. The results show that of the eight factors analyzed, there are six factors that have a significant influence on the risk of default, namely the age of the debtor, the number of family dependents, the amount of savings, the amount of collateral, the amount of credit, the credit period with an accuracy of 99.1%. Based on these six factors, a logistic regression model estimator is obtained that can be used to determine the probability of default from prospective debtors. This probability of default is very useful for KSP "ABC" to make a decision on whether or not to give credit, so that the performance of problem loan risk management can be guaranteed.
使用Swarm optima算法(PSO)对未来债务人违约机会的检测,以提高储蓄储蓄贷款合作人员的风险管理绩效
logistik。摘要储蓄贷款合作社(KSP)是在经济和贸易活动中起着重要作用的金融机构,它以贷款的形式将资金输送给需要它们进行业务或业务的成员。在本文中,我们研究了在逻辑回归模型中使用粒子群优化(PSO)算法检测潜在债务人的违约机会。在分析方法中,有几个步骤:(1)对潜在债务人风险因素数据进行标准化,(2)确定逻辑回归模型的假设,(3)使用粒子群优化(PSO)算法估计逻辑回归模型的参数,(4)检验各变量的显著性。根据印度尼西亚万隆KSP“ABC”拥有的过去数据变量,使用预期债务人的资格参数确定违约概率。结果表明,在分析的8个因素中,有6个因素对违约风险有显著影响,分别是债务人的年龄、家庭受抚养人的数量、储蓄金额、抵押金额、信贷金额、信贷期限,准确率为99.1%。基于这六个因素,得到了一个逻辑回归模型估计器,可以用来确定潜在债务人的违约概率。这种违约概率对于KSP“ABC”决定是否授信非常有用,从而保证问题贷款风险管理的绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信