Dynamic stability improvement of alkali fuel cell integrated system using PSO optimized PID control design

Yogita Dwivedi, Vijay Kumar Tayal
{"title":"Dynamic stability improvement of alkali fuel cell integrated system using PSO optimized PID control design","authors":"Yogita Dwivedi, Vijay Kumar Tayal","doi":"10.1109/RDCAPE.2017.8358322","DOIUrl":null,"url":null,"abstract":"Fuel cell is a well-known green-technology in this modern world. Because of the complex structure of fuel cell, voltage and current control is crucial. In this paper PID control design of alkali fuel cell integrated system in the presence of loading uncertainties is proposed. The PID controller parameters are tuned with the help of particle swarm optimization (PSO) artificial intelligence technique. This improves the integrated system performance subjected to variations in loading conditions. The MATLAB simulation results show the effectiveness of the proposed scheme.","PeriodicalId":442235,"journal":{"name":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2017.8358322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Fuel cell is a well-known green-technology in this modern world. Because of the complex structure of fuel cell, voltage and current control is crucial. In this paper PID control design of alkali fuel cell integrated system in the presence of loading uncertainties is proposed. The PID controller parameters are tuned with the help of particle swarm optimization (PSO) artificial intelligence technique. This improves the integrated system performance subjected to variations in loading conditions. The MATLAB simulation results show the effectiveness of the proposed scheme.
碱燃料电池集成系统动态稳定性改进采用粒子群优化PID控制设计
燃料电池是当今世界著名的绿色技术。由于燃料电池结构复杂,电压和电流的控制至关重要。提出了碱燃料电池集成系统在负荷不确定情况下的PID控制设计方法。采用粒子群优化(PSO)人工智能技术对PID控制器参数进行整定。这提高了受负载条件变化影响的集成系统性能。MATLAB仿真结果表明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信