Predicting machine failures from industrial time series data

F. Jansen, M. Holenderski, T. Ozcelebi, Paulien Dam, Bas Tijsma
{"title":"Predicting machine failures from industrial time series data","authors":"F. Jansen, M. Holenderski, T. Ozcelebi, Paulien Dam, Bas Tijsma","doi":"10.1109/CoDIT.2018.8394915","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of predicting machine failures in an industrial manufacturing process based on multivariate time series data. A workflow is presented for cleaning and preprocessing the data, and for training and evaluating a predictive model. Its implementation is modular and extensible to support changes in the underlying production processes and the gathered data. Two predictive models are presented, based on Convolutional Neural Networks and Recurrent Neural Networks, and evaluated on data from an advanced machining process used for cutting complex shapes into metal pieces.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper addresses the problem of predicting machine failures in an industrial manufacturing process based on multivariate time series data. A workflow is presented for cleaning and preprocessing the data, and for training and evaluating a predictive model. Its implementation is modular and extensible to support changes in the underlying production processes and the gathered data. Two predictive models are presented, based on Convolutional Neural Networks and Recurrent Neural Networks, and evaluated on data from an advanced machining process used for cutting complex shapes into metal pieces.
从工业时间序列数据预测机器故障
本文研究了基于多变量时间序列数据的工业制造过程中机器故障预测问题。提出了数据清洗和预处理的工作流程,以及训练和评估预测模型的工作流程。它的实现是模块化和可扩展的,以支持底层生产流程和收集数据中的更改。提出了基于卷积神经网络和循环神经网络的两种预测模型,并对用于将复杂形状切割成金属件的先进加工过程的数据进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信