Cattle Encephalon Glycoside and Ignotin Ameliorate Palmitoylation of PSD-95 and Enhance Expression of Synaptic Proteins in the Frontal Cortex of a APPswe/PS1dE9 Mouse Model of Alzheimer's Disease.
{"title":"Cattle Encephalon Glycoside and Ignotin Ameliorate Palmitoylation of PSD-95 and Enhance Expression of Synaptic Proteins in the Frontal Cortex of a APPswe/PS1dE9 Mouse Model of Alzheimer's Disease.","authors":"Yinghan Zhang, Ya-zhuo Hu, Zhi-Tao Han, Y. Geng, Zheng Xia, Yongsheng Zhou, Zhenfu Wang, Yuanyuan Wang, Eryan Kong, Xiaoning Wang, J. Jia, Hong-Hong Zhang","doi":"10.3233/jad-220009","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nSynaptic abnormalities in synaptic proteins are the initial hallmarks of Alzheimer's disease (AD). The higher level of palmitoylation of synaptic proteins was closely associated with amyloid-β (Aβ) in AD. Cattle encephalon glycoside and ignotin (CEGI) have been shown to act as multitarget neurotrophic agents in APPswe/PS1dE9 (APP/PS1) transgenic AD mice. However, it is not clear whether CEGI can influence Aβ deposition or whether it does so by the regulation of protein palmitoylation and expression of synaptic proteins in transgenic AD mice.\n\n\nOBJECTIVE\nIn this study, we investigated the roles of CEGI in modulating postsynaptic density protein 95 (PSD-95) palmitoylation, Aβ pathologies, and expression of synaptic-associated proteins in APP/PS1 mice.\n\n\nMETHODS\nFive-month-old APP/PS1 mice were treated intraperitoneally with 6.6 mL/kg of CEGI for 6 weeks. At the end of the treatment period, APP/PS1 mice were subjected to Morris water maze to test their cognitive functions. Acyl-biotinyl exchange (ABE) for PSD-95 palmitoylation, immunofluorescent staining for expression of PSD-95, N-methyl-D-aspartic acid receptor subunit 2B (NR2B), and synaptotagmin 1 (SYT1) were assessed in mouse brain sections.\n\n\nRESULTS\nCEGI treatment in APP/PS1 mice significantly reduced Aβ deposition, relieved memory deficits, and decreased PSD-95 palmitoylation while markedly increasing the expression of PSD-95, NR2B, and SYT1 in the frontal cortex. There was a significant correlation between Aβ expression and PSD-95 palmitoylation in APP/PS1 mice.\n\n\nCONCLUSION\nOur findings demonstrate that CEGI improved AD-like neuropathology, possibly by inhibiting PSD-95 palmitoylation, improving learning memory, and enhancing expression of synaptic-associated proteins, representing a potential therapy for AD treatment.","PeriodicalId":219895,"journal":{"name":"Journal of Alzheimer's disease : JAD","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's disease : JAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jad-220009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
BACKGROUND
Synaptic abnormalities in synaptic proteins are the initial hallmarks of Alzheimer's disease (AD). The higher level of palmitoylation of synaptic proteins was closely associated with amyloid-β (Aβ) in AD. Cattle encephalon glycoside and ignotin (CEGI) have been shown to act as multitarget neurotrophic agents in APPswe/PS1dE9 (APP/PS1) transgenic AD mice. However, it is not clear whether CEGI can influence Aβ deposition or whether it does so by the regulation of protein palmitoylation and expression of synaptic proteins in transgenic AD mice.
OBJECTIVE
In this study, we investigated the roles of CEGI in modulating postsynaptic density protein 95 (PSD-95) palmitoylation, Aβ pathologies, and expression of synaptic-associated proteins in APP/PS1 mice.
METHODS
Five-month-old APP/PS1 mice were treated intraperitoneally with 6.6 mL/kg of CEGI for 6 weeks. At the end of the treatment period, APP/PS1 mice were subjected to Morris water maze to test their cognitive functions. Acyl-biotinyl exchange (ABE) for PSD-95 palmitoylation, immunofluorescent staining for expression of PSD-95, N-methyl-D-aspartic acid receptor subunit 2B (NR2B), and synaptotagmin 1 (SYT1) were assessed in mouse brain sections.
RESULTS
CEGI treatment in APP/PS1 mice significantly reduced Aβ deposition, relieved memory deficits, and decreased PSD-95 palmitoylation while markedly increasing the expression of PSD-95, NR2B, and SYT1 in the frontal cortex. There was a significant correlation between Aβ expression and PSD-95 palmitoylation in APP/PS1 mice.
CONCLUSION
Our findings demonstrate that CEGI improved AD-like neuropathology, possibly by inhibiting PSD-95 palmitoylation, improving learning memory, and enhancing expression of synaptic-associated proteins, representing a potential therapy for AD treatment.