ARPilot

Yu-An Chen, Te-Yen Wu, Tim Chang, Jun You Liu, Yuan-Chang Hsieh, L. Hsu, Ming-Wei Hsu, Paul Taele, Neng-Hao Yu, Mike Y. Chen
{"title":"ARPilot","authors":"Yu-An Chen, Te-Yen Wu, Tim Chang, Jun You Liu, Yuan-Chang Hsieh, L. Hsu, Ming-Wei Hsu, Paul Taele, Neng-Hao Yu, Mike Y. Chen","doi":"10.1145/3229434.3229475","DOIUrl":null,"url":null,"abstract":"Drones offer camera angles that are not possible with traditional cameras and are becoming increasingly popular for videography. However, flying a drone and controlling its camera simultaneously requires manipulating 5-6 degrees of freedom (DOF) that needs significant training. We present ARPilot, a direct-manipulation interface that lets users plan an aerial video by physically moving their mobile devices around a miniature 3D model of the scene, shown via Augmented Reality (AR). The mobile devices act as the viewfinder, making them intuitive to explore and frame the shots. We leveraged AR technology to explore three 6DOF video-shooting interfaces on mobile devices: AR keyframe, AR continuous, and AR hybrid, and compared against a traditional touch interface in a user study. The results show that AR hybrid is the most preferred by the participants and expends the least effort among all the techniques, while the users' feedback suggests that AR continuous empowers more creative shots. We discuss several distinct usage patterns and report insights for further design.","PeriodicalId":344738,"journal":{"name":"Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3229434.3229475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Drones offer camera angles that are not possible with traditional cameras and are becoming increasingly popular for videography. However, flying a drone and controlling its camera simultaneously requires manipulating 5-6 degrees of freedom (DOF) that needs significant training. We present ARPilot, a direct-manipulation interface that lets users plan an aerial video by physically moving their mobile devices around a miniature 3D model of the scene, shown via Augmented Reality (AR). The mobile devices act as the viewfinder, making them intuitive to explore and frame the shots. We leveraged AR technology to explore three 6DOF video-shooting interfaces on mobile devices: AR keyframe, AR continuous, and AR hybrid, and compared against a traditional touch interface in a user study. The results show that AR hybrid is the most preferred by the participants and expends the least effort among all the techniques, while the users' feedback suggests that AR continuous empowers more creative shots. We discuss several distinct usage patterns and report insights for further design.
ARPilot
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信