i TPlace

Tai-Cheng Lee, Chenghan. Yang, Yih-Lang Li
{"title":"i\n TPlace","authors":"Tai-Cheng Lee, Chenghan. Yang, Yih-Lang Li","doi":"10.1145/3400302.3415613","DOIUrl":null,"url":null,"abstract":"Cell layout synthesis is a critical stage in modern digital IC design. In previous automatic synthesis solutions, algorithms always consider only cell area and routability. This is the first work to propose a method of delay-aware transistor placement for cell library synthesis at the sign-off level. We consider the delay and area of a cell in the transistor placement stage. Our methodology consists of three major steps. First, a search tree finds the candidate placement list that has the smallest area in a large search space. Then, a neural network filters out the unroutable candidates. Finally, a comparative convolutional neural network model, trained by sign-off level data, sorts the delays during the early placement stage. The experimental results show that the proposed CNN-based routable classifier can achieve up to 98% accuracy, and the proposed CNN-based delay ranker also can achieve up to 94.6% accuracy. The work obtains a 1.77% average sequential component delay improvement over the traditional cell synthesis method. Our method also has a 0.97% better delay performance than the human-level design.","PeriodicalId":367868,"journal":{"name":"Proceedings of the 39th International Conference on Computer-Aided Design","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400302.3415613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cell layout synthesis is a critical stage in modern digital IC design. In previous automatic synthesis solutions, algorithms always consider only cell area and routability. This is the first work to propose a method of delay-aware transistor placement for cell library synthesis at the sign-off level. We consider the delay and area of a cell in the transistor placement stage. Our methodology consists of three major steps. First, a search tree finds the candidate placement list that has the smallest area in a large search space. Then, a neural network filters out the unroutable candidates. Finally, a comparative convolutional neural network model, trained by sign-off level data, sorts the delays during the early placement stage. The experimental results show that the proposed CNN-based routable classifier can achieve up to 98% accuracy, and the proposed CNN-based delay ranker also can achieve up to 94.6% accuracy. The work obtains a 1.77% average sequential component delay improvement over the traditional cell synthesis method. Our method also has a 0.97% better delay performance than the human-level design.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信