Entangled State Preparation for Non-Binary Quantum Computing

Kaitlin N. Smith, M. Thornton
{"title":"Entangled State Preparation for Non-Binary Quantum Computing","authors":"Kaitlin N. Smith, M. Thornton","doi":"10.1109/ICRC.2019.8914717","DOIUrl":null,"url":null,"abstract":"A common model of quantum computing is the gate model with binary basis states. Here, we consider the gate model of quantum computing with a non-binary radix resulting in more than two basis states to represent a quantum digit, or qudit. Quantum entanglement is an important phenomenon that is a critical component of quantum computation and communications algorithms. The generation and use of entanglement among radix-2 qubits is well-known and used often in quantum computing algorithms. Quantum entanglement exists in higher-radix systems as well although little is written regarding the generation of higher-radix entangled states. We provide background describing the feasibility of multiple-valued logic quantum systems and describe a new systematic method for generating maximally entangled states in quantum systems of dimension greater than two. This method is implemented in a synthesis algorithm that is described. Experimental results are included that demonstrate the transformations needed to create specific forms of maximally entangled quantum states.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A common model of quantum computing is the gate model with binary basis states. Here, we consider the gate model of quantum computing with a non-binary radix resulting in more than two basis states to represent a quantum digit, or qudit. Quantum entanglement is an important phenomenon that is a critical component of quantum computation and communications algorithms. The generation and use of entanglement among radix-2 qubits is well-known and used often in quantum computing algorithms. Quantum entanglement exists in higher-radix systems as well although little is written regarding the generation of higher-radix entangled states. We provide background describing the feasibility of multiple-valued logic quantum systems and describe a new systematic method for generating maximally entangled states in quantum systems of dimension greater than two. This method is implemented in a synthesis algorithm that is described. Experimental results are included that demonstrate the transformations needed to create specific forms of maximally entangled quantum states.
非二进制量子计算的纠缠态制备
量子计算的一个常用模型是二元基态的门模型。在这里,我们考虑量子计算的门模型,其非二进制基数导致两个以上的基态来表示量子数字或qudit。量子纠缠是一种重要现象,是量子计算和通信算法的重要组成部分。基2量子位之间纠缠的产生和使用是众所周知的,并且经常用于量子计算算法。量子纠缠也存在于高基数系统中,尽管关于高基数纠缠态的产生的文献很少。我们提供了描述多值逻辑量子系统可行性的背景,并描述了在大于2维的量子系统中产生最大纠缠态的一种新的系统方法。本文描述了一种综合算法来实现该方法。实验结果包括,证明需要创建最大纠缠量子态的特定形式的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信