A New Test of Cluster Hypothesis Using a Scalable Similarity-Based Agglomerative Hierarchical Clustering Framework

Xinyu Wang, Julien Ah-Pine, J. Darmont
{"title":"A New Test of Cluster Hypothesis Using a Scalable Similarity-Based Agglomerative Hierarchical Clustering Framework","authors":"Xinyu Wang, Julien Ah-Pine, J. Darmont","doi":"10.24348/coria.2017.RJCRI_15","DOIUrl":null,"url":null,"abstract":"The Cluster Hypothesis is the fundamental assumption of using clustering in Information Retrieval. It states that similar documents tend to be relevant to the same query. Past research works extensively test this hypothesis using agglomerative hierarchical clustering (AHC) methods. However, their conclusions are not consistent concerning retrieval effectiveness for a given clustering method. The main limit of these works is the scalability issue of AHC. In this paper, we extend our previous work to a new test of the cluster hypothesis by applying a scalable similarity-based AHC framework. Principally, the input pairwise cosine similarity matrix is sparsified by given threshold values to reduce memory usage and running time. Our experiments show that even when the similarity matrix is largely sparsified, retrieval effectiveness is retained for all tested methods. Moreover, for two clustering methods, complete link and average link, they do not always dominate the other methods as reported in past works.","PeriodicalId":390974,"journal":{"name":"Conférence en Recherche d'Infomations et Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conférence en Recherche d'Infomations et Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24348/coria.2017.RJCRI_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Cluster Hypothesis is the fundamental assumption of using clustering in Information Retrieval. It states that similar documents tend to be relevant to the same query. Past research works extensively test this hypothesis using agglomerative hierarchical clustering (AHC) methods. However, their conclusions are not consistent concerning retrieval effectiveness for a given clustering method. The main limit of these works is the scalability issue of AHC. In this paper, we extend our previous work to a new test of the cluster hypothesis by applying a scalable similarity-based AHC framework. Principally, the input pairwise cosine similarity matrix is sparsified by given threshold values to reduce memory usage and running time. Our experiments show that even when the similarity matrix is largely sparsified, retrieval effectiveness is retained for all tested methods. Moreover, for two clustering methods, complete link and average link, they do not always dominate the other methods as reported in past works.
基于可扩展相似性的聚类层次聚类框架的聚类假设检验
聚类假设是在信息检索中使用聚类的基本假设。它表示类似的文档往往与相同的查询相关。过去的研究工作广泛地使用聚集层次聚类(AHC)方法来验证这一假设。然而,对于给定聚类方法的检索效果,他们的结论并不一致。这些工作的主要限制是AHC的可伸缩性问题。在本文中,我们通过应用可扩展的基于相似性的AHC框架,将我们之前的工作扩展到集群假设的新测试。主要是通过给定阈值对输入两两余弦相似矩阵进行稀疏化,以减少内存使用和运行时间。我们的实验表明,即使相似性矩阵在很大程度上被稀疏化,所有测试方法的检索效率都保持不变。此外,对于完全链接和平均链接这两种聚类方法,它们并不总是像以往报道的那样主导其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信