Comparison of Two Compressive Sensing Algorithms for Automotive Radar

C. Nafornita, A. Isar, Teodor Dehelean, I. Nafornita
{"title":"Comparison of Two Compressive Sensing Algorithms for Automotive Radar","authors":"C. Nafornita, A. Isar, Teodor Dehelean, I. Nafornita","doi":"10.1109/ISETC50328.2020.9301105","DOIUrl":null,"url":null,"abstract":"We analyze the possibility of using compressive sensing algorithms for the rapid chirps waveform in automotive radar sensor applications. Two algorithms are considered: Orthogonal Matching Pursuit (OMP) and l1-magic. We compare the two methods in a scenario using nine targets, with and without noise. The number of non-uniformly placed samples is four times less than the number of uniform samples, with target detection possible even in the presence of noise. It is shown that OMP outperforms l1-magic, with spectra not affected by the Compressive Sensing reconstruction. The results are comparable with the traditional uniform sampling results.","PeriodicalId":165650,"journal":{"name":"2020 International Symposium on Electronics and Telecommunications (ISETC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Electronics and Telecommunications (ISETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISETC50328.2020.9301105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the possibility of using compressive sensing algorithms for the rapid chirps waveform in automotive radar sensor applications. Two algorithms are considered: Orthogonal Matching Pursuit (OMP) and l1-magic. We compare the two methods in a scenario using nine targets, with and without noise. The number of non-uniformly placed samples is four times less than the number of uniform samples, with target detection possible even in the presence of noise. It is shown that OMP outperforms l1-magic, with spectra not affected by the Compressive Sensing reconstruction. The results are comparable with the traditional uniform sampling results.
汽车雷达两种压缩感知算法的比较
我们分析了在汽车雷达传感器应用中对快速啁啾波形使用压缩感知算法的可能性。本文考虑了正交匹配追踪(OMP)和11 -magic两种算法。我们在使用9个目标的场景中比较了两种方法,有噪声和无噪声。非均匀放置的样本数量比均匀放置的样本数量少四倍,即使在存在噪声的情况下也可以检测目标。结果表明,OMP算法优于11 -magic算法,其光谱不受压缩感知重构的影响。结果与传统的均匀采样结果具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信