Predicting scalar diversity with context-driven uncertainty over alternatives

Jennifer Hu, R. Levy, Sebastian Schuster
{"title":"Predicting scalar diversity with context-driven uncertainty over alternatives","authors":"Jennifer Hu, R. Levy, Sebastian Schuster","doi":"10.18653/v1/2022.cmcl-1.8","DOIUrl":null,"url":null,"abstract":"Scalar implicature (SI) arises when a speaker uses an expression (e.g., “some”) that is semantically compatible with a logically stronger alternative on the same scale (e.g., “all”), leading the listener to infer that they did not intend to convey the stronger meaning. Prior work has demonstrated that SI rates are highly variable across scales, raising the question of what factors determine the SI strength for a particular scale. Here, we test the hypothesis that SI rates depend on the listener’s confidence in the underlying scale, which we operationalize as uncertainty over the distribution of possible alternatives conditioned on the context. We use a T5 model fine-tuned on a text infilling task to estimate this distribution. We find that scale uncertainty predicts human SI rates, measured as entropy over the sampled alternatives and over latent classes among alternatives in sentence embedding space. Furthermore, we do not find a significant effect of the surprisal of the strong scalemate. Our results suggest that pragmatic inferences depend on listeners’ context-driven uncertainty over alternatives.","PeriodicalId":428409,"journal":{"name":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.cmcl-1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Scalar implicature (SI) arises when a speaker uses an expression (e.g., “some”) that is semantically compatible with a logically stronger alternative on the same scale (e.g., “all”), leading the listener to infer that they did not intend to convey the stronger meaning. Prior work has demonstrated that SI rates are highly variable across scales, raising the question of what factors determine the SI strength for a particular scale. Here, we test the hypothesis that SI rates depend on the listener’s confidence in the underlying scale, which we operationalize as uncertainty over the distribution of possible alternatives conditioned on the context. We use a T5 model fine-tuned on a text infilling task to estimate this distribution. We find that scale uncertainty predicts human SI rates, measured as entropy over the sampled alternatives and over latent classes among alternatives in sentence embedding space. Furthermore, we do not find a significant effect of the surprisal of the strong scalemate. Our results suggest that pragmatic inferences depend on listeners’ context-driven uncertainty over alternatives.
预测具有上下文驱动的不确定性的标量多样性
当说话者使用的表达(如“some”)在语义上与逻辑上更强的替代(如“all”)在同一尺度上兼容时,就会产生标量含义(SI),导致听者推断他们并不想传达更强的意思。先前的工作已经证明,SI率在不同的尺度上是高度可变的,这就提出了一个问题,即什么因素决定了特定尺度的SI强度。在这里,我们测试了一个假设,即SI率取决于听者对潜在量表的信心,我们将其操作为基于上下文的可能替代方案分布的不确定性。我们使用对文本填充任务进行微调的T5模型来估计这种分布。我们发现,尺度不确定性预测人类的SI率,以句子嵌入空间中采样选项和选项之间的潜在类别的熵来衡量。此外,我们没有发现强尺度的惊讶度的显著影响。我们的研究结果表明,语用推理取决于听者对替代方案的语境驱动的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信