Design of a Simplified Neuro-Fuzzy-GA-based IM Drive Deploying Linearization Approach

R. Mishra, K. Mohanty, K. Thakre, P. Sahu
{"title":"Design of a Simplified Neuro-Fuzzy-GA-based IM Drive Deploying Linearization Approach","authors":"R. Mishra, K. Mohanty, K. Thakre, P. Sahu","doi":"10.1109/INDICON.2017.8487488","DOIUrl":null,"url":null,"abstract":"This paper focuses on the design and implementation of a genetic algorithm (GA) tuned modified simple neuro-fuzzy control (NFC) for optimal performance of induction motor (IM) drive employing feedback linearization (FBL) approach. The intuitive FBL with the proposed simplified NFC with GA (SNFC-GA) substantially reduces the torque chattering and improves the speed response of the IM drive. This new technique also has the main advantage of improved computational efficiency by reducing computational burden over classical NFC and thus, fit for real-time industrial applications. Moreover, the GA searches the optimal parameters of the simplified NFC in order to ensure the global convergence of error. The efficacy of the proposed controller using FBL IM drive is investigated in simulation as well as in experiment, and it is evident that the robust and optimal dynamic performance of the system is achieved in terms of parameter variations and external load disturbance.","PeriodicalId":263943,"journal":{"name":"2017 14th IEEE India Council International Conference (INDICON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IEEE India Council International Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2017.8487488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the design and implementation of a genetic algorithm (GA) tuned modified simple neuro-fuzzy control (NFC) for optimal performance of induction motor (IM) drive employing feedback linearization (FBL) approach. The intuitive FBL with the proposed simplified NFC with GA (SNFC-GA) substantially reduces the torque chattering and improves the speed response of the IM drive. This new technique also has the main advantage of improved computational efficiency by reducing computational burden over classical NFC and thus, fit for real-time industrial applications. Moreover, the GA searches the optimal parameters of the simplified NFC in order to ensure the global convergence of error. The efficacy of the proposed controller using FBL IM drive is investigated in simulation as well as in experiment, and it is evident that the robust and optimal dynamic performance of the system is achieved in terms of parameter variations and external load disturbance.
采用线性化方法的简化神经模糊ga IM驱动器设计
本文主要研究了采用反馈线性化(FBL)方法设计和实现一种遗传算法(GA)调谐的改进简单神经模糊控制(NFC),以实现感应电机(IM)驱动器的最优性能。采用简化的带遗传算法的NFC的直观FBL (SNFC-GA)大大减少了转矩抖振,提高了IM驱动器的速度响应。这种新技术的主要优点是通过减少传统NFC的计算负担来提高计算效率,因此适合实时工业应用。此外,为了保证误差的全局收敛,遗传算法搜索简化后的NFC的最优参数。通过仿真和实验验证了采用FBL IM驱动的控制器的有效性,结果表明,在参数变化和外部负载干扰的情况下,系统具有最优的鲁棒动态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信