J. Grandvuillemin, D. Chamagne, R. Glises, C. Tiraby, F. Degrange
{"title":"Thermal Modelling Of Enclosed Cables In Automotive Applications","authors":"J. Grandvuillemin, D. Chamagne, R. Glises, C. Tiraby, F. Degrange","doi":"10.1109/VPPC.2007.4544220","DOIUrl":null,"url":null,"abstract":"This paper describes the transient thermal modelling of an electrical conductor used in the automobile electrical harnesses. This study includes 4 principal parts: Initially, a geometrical subdivision of the cable based on the mesh network method is described. Then, a detailed study of the heat transfers is made, particularly the internal convection and the radiation leading to the thermal modelling of a conductor. The implicit method of Crank-Nicolson then permits to numerically solve the obtained matrix system in order to predict the thermal behaviour of a wire. Finally, the mathematical model was validated by several experiments on samples of cables fitted with local thermocouples and electrical measures. The model could also be extended to high power applications, in particular the power cables used in electric vehicles.","PeriodicalId":345424,"journal":{"name":"2007 IEEE Vehicle Power and Propulsion Conference","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Vehicle Power and Propulsion Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2007.4544220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper describes the transient thermal modelling of an electrical conductor used in the automobile electrical harnesses. This study includes 4 principal parts: Initially, a geometrical subdivision of the cable based on the mesh network method is described. Then, a detailed study of the heat transfers is made, particularly the internal convection and the radiation leading to the thermal modelling of a conductor. The implicit method of Crank-Nicolson then permits to numerically solve the obtained matrix system in order to predict the thermal behaviour of a wire. Finally, the mathematical model was validated by several experiments on samples of cables fitted with local thermocouples and electrical measures. The model could also be extended to high power applications, in particular the power cables used in electric vehicles.