Fine-Grained Electromagnetic Side-Channel Analysis Resilient Secure AES Core with Stacked Voltage Domains and Spatio-temporally Randomized Circuit Blocks

Meizhi Wang, Sirish Oruganti, Shanshan Xie, Raghavan Kumar, S. Mathew, J. Kulkarni
{"title":"Fine-Grained Electromagnetic Side-Channel Analysis Resilient Secure AES Core with Stacked Voltage Domains and Spatio-temporally Randomized Circuit Blocks","authors":"Meizhi Wang, Sirish Oruganti, Shanshan Xie, Raghavan Kumar, S. Mathew, J. Kulkarni","doi":"10.1109/ESSCIRC55480.2022.9911449","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate a novel unique design approach specifically targeting improved resilience against the fine-grained electromagnetic (EM) side-channel analysis (SCA) attacks. Fine-grained EM SCA captures high SNR EM signature with tiny probes (1mm diameter) compared to coarse-grained EM (∼10mm diameter), making it more potent and leading to a higher threat. The EM-SCA critical circuit blocks are voltage-stacked to share a current loop, and a push-pull voltage regulator (VR) balances the mismatch current between the two stacked blocks. Dataflow and current loops are spatially and temporally randomized to obscure the EM side-channel signatures. Measurement results from a 128-bit Parallel Advanced Encryption Standard (AES) core fabricated in 65nm CMOS shows MTD improvement of 1507X for fine-grained EM SCA. Coarse-grained EM and Power SCA MTDs also show an improvement of 122X and 657X respectively, which may be improved further by combining prior reported SCA resilient techniques.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we demonstrate a novel unique design approach specifically targeting improved resilience against the fine-grained electromagnetic (EM) side-channel analysis (SCA) attacks. Fine-grained EM SCA captures high SNR EM signature with tiny probes (1mm diameter) compared to coarse-grained EM (∼10mm diameter), making it more potent and leading to a higher threat. The EM-SCA critical circuit blocks are voltage-stacked to share a current loop, and a push-pull voltage regulator (VR) balances the mismatch current between the two stacked blocks. Dataflow and current loops are spatially and temporally randomized to obscure the EM side-channel signatures. Measurement results from a 128-bit Parallel Advanced Encryption Standard (AES) core fabricated in 65nm CMOS shows MTD improvement of 1507X for fine-grained EM SCA. Coarse-grained EM and Power SCA MTDs also show an improvement of 122X and 657X respectively, which may be improved further by combining prior reported SCA resilient techniques.
具有堆叠电压域和时空随机电路块的弹性安全AES核的细粒度电磁侧信道分析
在这项工作中,我们展示了一种新颖独特的设计方法,专门针对提高对细粒度电磁(EM)侧信道分析(SCA)攻击的弹性。与粗粒度EM(直径~ 10mm)相比,细粒度EM SCA使用微小探针(直径1mm)捕获高信噪比EM特征,使其更有效并导致更高的威胁。EM-SCA关键电路模块电压堆叠以共享电流回路,推挽式稳压器(VR)平衡两个堆叠模块之间的不匹配电流。数据流和电流环在空间和时间上随机化,以模糊EM侧通道特征。采用65nm CMOS工艺制作的128位并行高级加密标准(AES)核心的测量结果表明,细粒度EM SCA的MTD提高了1507X。粗粒度的EM和Power SCA mtd也分别显示出122X和657X的改进,通过结合先前报道的SCA弹性技术可以进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信