Feature saliency based SLAM of mobile robot

Ling Li, H. Kim, Shenlu Jiang, Yong-Serk Kim, Tae-Yong Kuc
{"title":"Feature saliency based SLAM of mobile robot","authors":"Ling Li, H. Kim, Shenlu Jiang, Yong-Serk Kim, Tae-Yong Kuc","doi":"10.23919/ELINFOCOM.2018.8330615","DOIUrl":null,"url":null,"abstract":"We propose a stable CV-SLAM (Ceiling Vision based Simultaneous Localization and Mapping) technique, which uses both circle and corner features as landmarks in the scene and improves the process stability using saliency measurement. It provides a method which utilizes different feature detection algorithms to detect various key points. And then we measure saliency strength of every points to pick out more stable feature points and generate a hybrid map based on Delaunay triangles among these points. Moreover, we complete SLAM using an extended Kalman filter(EKF), which is fundament for robotic SLAM. Simulation results show the effects of proposed methods.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a stable CV-SLAM (Ceiling Vision based Simultaneous Localization and Mapping) technique, which uses both circle and corner features as landmarks in the scene and improves the process stability using saliency measurement. It provides a method which utilizes different feature detection algorithms to detect various key points. And then we measure saliency strength of every points to pick out more stable feature points and generate a hybrid map based on Delaunay triangles among these points. Moreover, we complete SLAM using an extended Kalman filter(EKF), which is fundament for robotic SLAM. Simulation results show the effects of proposed methods.
基于特征显著性的移动机器人SLAM
我们提出了一种稳定的CV-SLAM(基于天花板视觉的同步定位和映射)技术,该技术使用圆形和角落特征作为场景中的地标,并使用显著性测量来提高过程的稳定性。它提供了一种利用不同的特征检测算法来检测各种关键点的方法。然后,我们测量每个点的显著性强度,从中挑选出更稳定的特征点,并基于这些点之间的Delaunay三角形生成混合地图。此外,我们使用扩展卡尔曼滤波(EKF)来完成SLAM,这是机器人SLAM的基础。仿真结果表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信