{"title":"Study of the protein structure analysis and molecular evolution of E-selectin in Homo sapiens","authors":"Qiongshan Wang, Jing Wang, Quhuan Li, Mridula Thapa, Simin Chen","doi":"10.1109/ITIME.2011.6130749","DOIUrl":null,"url":null,"abstract":"E-selectin is a cell adhesion molecule expressed only on endothelial cells activated by cytokines. During inflammation, E-selectin plays an important role in recruiting leukocytes to the site of injury. In humans, E-selectin is encoded by the SELE gene. To better understand the expression and regulation of E-selectin gene, we analyzed the protein structure of E-selectin in human and molecular evolution of its gene in 9 vertebrate animals with bioinformatic softwares and network resources. Results showed that E-selectin is an unstable hydrophilic membrane protein with only one transmembrane domain as well as a signal peptide. The secondary structure is composed of α-helix (11.31%), extended strand (25.74%), and random coil (62.95%). The molecular evolution analysis revealed that the 9 vertebrates were divided into two major branches, one of which includes Bos Taurus, Ovis aries, Odocoileus hemionus, Sus scrofa, Canis Iupus familiaris, Equus caballus and the other is for Homo sapiens, Mus musculus, and Rattus norvegicus. This phylogenetic tree was consistent well with recognized evolutionary relationship among these species. In this research, we investigated the basic protein structure and molecular evolution of E-selectin in Homo sapiens, which will help us to understand how diseases and infection can be controlled in molecular level, and to develop specific drugs based on this knowledge.","PeriodicalId":170838,"journal":{"name":"2011 IEEE International Symposium on IT in Medicine and Education","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on IT in Medicine and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2011.6130749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
E-selectin is a cell adhesion molecule expressed only on endothelial cells activated by cytokines. During inflammation, E-selectin plays an important role in recruiting leukocytes to the site of injury. In humans, E-selectin is encoded by the SELE gene. To better understand the expression and regulation of E-selectin gene, we analyzed the protein structure of E-selectin in human and molecular evolution of its gene in 9 vertebrate animals with bioinformatic softwares and network resources. Results showed that E-selectin is an unstable hydrophilic membrane protein with only one transmembrane domain as well as a signal peptide. The secondary structure is composed of α-helix (11.31%), extended strand (25.74%), and random coil (62.95%). The molecular evolution analysis revealed that the 9 vertebrates were divided into two major branches, one of which includes Bos Taurus, Ovis aries, Odocoileus hemionus, Sus scrofa, Canis Iupus familiaris, Equus caballus and the other is for Homo sapiens, Mus musculus, and Rattus norvegicus. This phylogenetic tree was consistent well with recognized evolutionary relationship among these species. In this research, we investigated the basic protein structure and molecular evolution of E-selectin in Homo sapiens, which will help us to understand how diseases and infection can be controlled in molecular level, and to develop specific drugs based on this knowledge.