L. Görtschacher, J. Grosinger, B. Auinger, Dominik Amschl, P. Priller, U. Muehlmann, W. Bösch
{"title":"SIMO RFID system performance in an engine test bed","authors":"L. Görtschacher, J. Grosinger, B. Auinger, Dominik Amschl, P. Priller, U. Muehlmann, W. Bösch","doi":"10.1109/EURFID.2015.7332396","DOIUrl":null,"url":null,"abstract":"This paper presents a performance evaluation of a radio frequency identification (RFID) system in an indoor multipath environment at 890 MHz. A single input multiple output RFID system is investigated with respect to the feasibility of localizing tagged measurement equipment in an engine test bed. Based on the available signal power within the test bed, the system performance is evaluated with respect to state-of-the-art RFID system components. The evaluations show that an exemplary RFID system experiences no outages when using a passive RFID transponder (tag) with a chip sensitivity of -17:5 dBm and an RFID reader with a transmit power of 30 dBm and a receiver sensitivity of -95 dBm. Additionally, the evaluation allows to deduce system requirement parameters for the further realization of such an RFID reader, e.g., the minimum transmit power for the reliable operation in the engine test bed is 24:5 dBm.","PeriodicalId":205916,"journal":{"name":"2015 International EURASIP Workshop on RFID Technology (EURFID)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International EURASIP Workshop on RFID Technology (EURFID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURFID.2015.7332396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a performance evaluation of a radio frequency identification (RFID) system in an indoor multipath environment at 890 MHz. A single input multiple output RFID system is investigated with respect to the feasibility of localizing tagged measurement equipment in an engine test bed. Based on the available signal power within the test bed, the system performance is evaluated with respect to state-of-the-art RFID system components. The evaluations show that an exemplary RFID system experiences no outages when using a passive RFID transponder (tag) with a chip sensitivity of -17:5 dBm and an RFID reader with a transmit power of 30 dBm and a receiver sensitivity of -95 dBm. Additionally, the evaluation allows to deduce system requirement parameters for the further realization of such an RFID reader, e.g., the minimum transmit power for the reliable operation in the engine test bed is 24:5 dBm.