R. J. Bril, S. Altmeyer, M. V. D. Heuvel, Robert I. Davis, M. Behnam
{"title":"Integrating Cache-Related Pre-Emption Delays into Analysis of Fixed Priority Scheduling with Pre-Emption Thresholds","authors":"R. J. Bril, S. Altmeyer, M. V. D. Heuvel, Robert I. Davis, M. Behnam","doi":"10.1109/RTSS.2014.25","DOIUrl":null,"url":null,"abstract":"Cache-related pre-emption delays (CRPD) have been integrated into the schedulability analysis of sporadic tasks with constrained deadlines for fixed-priority pre-emptive scheduling (FPPS). This paper generalizes that work by integrating CRPD into the schedulability analysis of tasks with arbitrary deadlines for fixed-priority pre-emption threshold scheduling (FPTS). The analysis is complemented by an optimal threshold assignment algorithm that minimizes CRPD. The paper includes a comparative evaluation of the schedulability ratios of FPPS and FPTS, for constrained-deadline tasks, taking CRPD into account.","PeriodicalId":353167,"journal":{"name":"2014 IEEE Real-Time Systems Symposium","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Cache-related pre-emption delays (CRPD) have been integrated into the schedulability analysis of sporadic tasks with constrained deadlines for fixed-priority pre-emptive scheduling (FPPS). This paper generalizes that work by integrating CRPD into the schedulability analysis of tasks with arbitrary deadlines for fixed-priority pre-emption threshold scheduling (FPTS). The analysis is complemented by an optimal threshold assignment algorithm that minimizes CRPD. The paper includes a comparative evaluation of the schedulability ratios of FPPS and FPTS, for constrained-deadline tasks, taking CRPD into account.