{"title":"Sub-nanosecond Reverse Recovery Measurement for ESD Devices","authors":"A. Ayling, Shudong Huang, E. Rosenbaum","doi":"10.1109/IRPS45951.2020.9129596","DOIUrl":null,"url":null,"abstract":"A method to measure sub-nanosecond reverse recovery in wafer-level test structures is presented. The setup uses a transmission line pulse generator with a time-domain through connection to measure the device-under-test current. The setup is used to measure reverse recovery in a 65-nm CMOS ESD diode, and it is found that a quasi-static compact model does not accurately describe the observed transient. A non-quasi-static charge control model is used to accurately simulate both the reverse recovery and the forward bias behavior.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9129596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A method to measure sub-nanosecond reverse recovery in wafer-level test structures is presented. The setup uses a transmission line pulse generator with a time-domain through connection to measure the device-under-test current. The setup is used to measure reverse recovery in a 65-nm CMOS ESD diode, and it is found that a quasi-static compact model does not accurately describe the observed transient. A non-quasi-static charge control model is used to accurately simulate both the reverse recovery and the forward bias behavior.