The damage control of sub layer while ion-driven etching with vertical carbon profile implemented

Seungjin Mun, Lina Yoo, Jongdeok Hong, J. Ahn, Kyung-yub Jeon, Ke Bai
{"title":"The damage control of sub layer while ion-driven etching with vertical carbon profile implemented","authors":"Seungjin Mun, Lina Yoo, Jongdeok Hong, J. Ahn, Kyung-yub Jeon, Ke Bai","doi":"10.1117/12.2657249","DOIUrl":null,"url":null,"abstract":"As device scale down to sub 3nm, NMOS/PMOS boundary patterning becomes critical in logic product. This patterning requires highly directional etching while maintaining high selectivity to the base metal layer. In this paper, we demonstrated that the ion energy has the trade-off between the profile verticality and the surface damage. The ion energy was strongly controlled by the bias voltage and surface damage was improved with lower bias voltage, but profile verticality was deteriorated because of the ion angle dispersion. To enhance the profile verticality the carbon rich gas was added as the top passivation. The proposed method will be a practical in sub-3nm logic boundary patterning.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2657249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As device scale down to sub 3nm, NMOS/PMOS boundary patterning becomes critical in logic product. This patterning requires highly directional etching while maintaining high selectivity to the base metal layer. In this paper, we demonstrated that the ion energy has the trade-off between the profile verticality and the surface damage. The ion energy was strongly controlled by the bias voltage and surface damage was improved with lower bias voltage, but profile verticality was deteriorated because of the ion angle dispersion. To enhance the profile verticality the carbon rich gas was added as the top passivation. The proposed method will be a practical in sub-3nm logic boundary patterning.
实现了垂直碳轮廓离子驱动刻蚀时子层的损伤控制
随着器件尺寸缩小到3nm以下,NMOS/PMOS边界图形在逻辑产品中变得至关重要。这种图案需要高度定向蚀刻,同时保持对基体金属层的高选择性。在本文中,我们证明了离子能量在剖面垂直度和表面损伤之间具有权衡关系。离子能量受偏置电压的强烈控制,较低的偏置电压可改善表面损伤,但离子角色散会导致剖面垂直度下降。为了提高剖面的垂直度,加入富碳气体作为顶部钝化。该方法将在亚3nm逻辑边界图中具有实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信