A Reverse Converter for the Enhanced Moduli Set {2n-1, 2n+1, 22n, 22n+1-1} Using CRT and MRC

A. S. Molahosseini, K. Navi
{"title":"A Reverse Converter for the Enhanced Moduli Set {2n-1, 2n+1, 22n, 22n+1-1} Using CRT and MRC","authors":"A. S. Molahosseini, K. Navi","doi":"10.1109/ISVLSI.2010.105","DOIUrl":null,"url":null,"abstract":"The moduli set {2n–1, 2n, 2n+1, 22n+1–1} has been newly introduced for residue number system (RNS) as an arithmetic-friendly large dynamic range moduli set which can lead to a fast RNS arithmetic unit. In this paper, we present a reverse converter for the moduli set {2n–1, 2n+1, 22n, 22n+1–1} which is derived from the moduli set {2n–1, 2n, 2n+1, 22n+1–1} by enhancing modulo 2n to 22n. With this enhancement the DR increased to 6n+1 bits, while the speed of moduli set for arithmetic unit is not changed. The reverse converter for the moduli set {2n–1, 2n, 2n+1, 22n+1–1} is obtained by considering an existing Chinese remainder theorem (CRT)-based design of reverse converter for the subset {22n, 2n–1, 2n+1} along with a two-channel mixed-radix conversion (MRC) algorithm for the composite set {22n (22n–1), 22n+1–1}.","PeriodicalId":187530,"journal":{"name":"2010 IEEE Computer Society Annual Symposium on VLSI","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2010.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The moduli set {2n–1, 2n, 2n+1, 22n+1–1} has been newly introduced for residue number system (RNS) as an arithmetic-friendly large dynamic range moduli set which can lead to a fast RNS arithmetic unit. In this paper, we present a reverse converter for the moduli set {2n–1, 2n+1, 22n, 22n+1–1} which is derived from the moduli set {2n–1, 2n, 2n+1, 22n+1–1} by enhancing modulo 2n to 22n. With this enhancement the DR increased to 6n+1 bits, while the speed of moduli set for arithmetic unit is not changed. The reverse converter for the moduli set {2n–1, 2n, 2n+1, 22n+1–1} is obtained by considering an existing Chinese remainder theorem (CRT)-based design of reverse converter for the subset {22n, 2n–1, 2n+1} along with a two-channel mixed-radix conversion (MRC) algorithm for the composite set {22n (22n–1), 22n+1–1}.
基于CRT和MRC的增强模集{2n- 1,2n + 1,22n, 22n+1-1}的反向变换器
将模集{2n - 1,2n, 2n+ 1,22n +1 - 1}作为一种算术友好的大动态范围模集引入到残数系统(RNS)中,可以得到一个快速的RNS算术单元。本文给出了模集{2n - 1,2n + 1,22n, 22n+1 - 1}的反向变换器,该变换器由模集{2n - 1,2n, 2n+ 1,22n +1 - 1}推导而来。通过这种增强,DR增加到6n+1位,而算术单元的模设置速度不变。通过考虑现有的基于中国剩余定理(CRT)的子集{22n, 2n - 1,2n +1}的反向转换器设计,以及复合集{22n (22n - 1), 22n+1 - 1}的双通道混合基数转换(MRC)算法,得到模集{2n - 1,2n +1 - 1}的反向转换器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信