Cumulative Knowledge in the Social Sciences: The Case of Improving Voters’ Information

Federica Izzo, Torun Dewan, Stephane Wolton
{"title":"Cumulative Knowledge in the Social Sciences: The Case of Improving Voters’ Information","authors":"Federica Izzo, Torun Dewan, Stephane Wolton","doi":"10.2139/ssrn.3239047","DOIUrl":null,"url":null,"abstract":"Cumulative knowledge requires (at least) two conditions to be met: unbiasedness and comparability. Research designs should be unbiased so that researchers obtain correct estimates of an underlying quantity. Empirical specifications, the actual regression run, should permit comparability so that researchers measure the same quantity across distinct studies. The first condition is covered by the causal revolution, the second is the object of this paper. Using the example of interventions providing additional information to voters, we show that unbiasedness does not imply comparability. Any two studies that employ the commonly used specification to analyze the electoral consequences of informational campaigns estimates different estimands. This holds true even after removing all external validity issue, all statistical noise, and all sources of bias. We highlight conditions to restore comparability and describe specifications that satisfy them.","PeriodicalId":427099,"journal":{"name":"Institutions & Transition Economics: Theoretical & Methodological Issues eJournal","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Institutions & Transition Economics: Theoretical & Methodological Issues eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3239047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Cumulative knowledge requires (at least) two conditions to be met: unbiasedness and comparability. Research designs should be unbiased so that researchers obtain correct estimates of an underlying quantity. Empirical specifications, the actual regression run, should permit comparability so that researchers measure the same quantity across distinct studies. The first condition is covered by the causal revolution, the second is the object of this paper. Using the example of interventions providing additional information to voters, we show that unbiasedness does not imply comparability. Any two studies that employ the commonly used specification to analyze the electoral consequences of informational campaigns estimates different estimands. This holds true even after removing all external validity issue, all statistical noise, and all sources of bias. We highlight conditions to restore comparability and describe specifications that satisfy them.
社会科学中的累积知识:以改善选民信息为例
积累知识需要(至少)满足两个条件:无偏倚和可比性。研究设计应该是无偏倚的,这样研究人员才能获得对潜在数量的正确估计。经验规范,实际的回归运行,应该允许可比性,以便研究人员在不同的研究中测量相同的数量。第一个条件是因果革命的范畴,第二个条件是本文研究的对象。通过向选民提供额外信息的干预措施的例子,我们表明,公正并不意味着可比性。任何两项使用常用规范来分析信息运动的选举结果的研究估计出不同的估计。即使在排除了所有外部有效性问题、所有统计噪声和所有偏见来源之后,这一点仍然成立。我们强调恢复可比性的条件,并描述满足这些条件的规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信