{"title":"Encoder-Decoder Language Model for Khmer Handwritten Text Recognition in Historical Documents","authors":"Seanghort Born, Dona Valy, Phutphalla Kong","doi":"10.1109/SKIMA57145.2022.10029532","DOIUrl":null,"url":null,"abstract":"Correcting spelling errors in texts extracted from Khmer palm leaf manuscripts by handwritten text recognition (HTR) systems can be very challenging. A Khmer Language Model developed in this study aims to facilitate the task mentioned above. The proposed model utilizes long short-term memory (LSTM) modules applicable for improving the performance of text recognition which is to predict a sequence of characters as output. The architecture of the language model is based on an encoder-decoder mechanism which is composed of two parts: an encoder to capture the context of the input erroneous word and a decoder to decode and predict the correctly spelt output word. Experimental evaluations are conducted on a text corpus consisting of Khmer words extracted from Sleuk-Rith set.","PeriodicalId":277436,"journal":{"name":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA57145.2022.10029532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Correcting spelling errors in texts extracted from Khmer palm leaf manuscripts by handwritten text recognition (HTR) systems can be very challenging. A Khmer Language Model developed in this study aims to facilitate the task mentioned above. The proposed model utilizes long short-term memory (LSTM) modules applicable for improving the performance of text recognition which is to predict a sequence of characters as output. The architecture of the language model is based on an encoder-decoder mechanism which is composed of two parts: an encoder to capture the context of the input erroneous word and a decoder to decode and predict the correctly spelt output word. Experimental evaluations are conducted on a text corpus consisting of Khmer words extracted from Sleuk-Rith set.