Dennis D. Weller, Michael Hefenbrock, M. Tahoori, J. Aghassi‐Hagmann, M. Beigl
{"title":"Programmable Neuromorphic Circuit based on Printed Electrolyte-Gated Transistors","authors":"Dennis D. Weller, Michael Hefenbrock, M. Tahoori, J. Aghassi‐Hagmann, M. Beigl","doi":"10.1109/ASP-DAC47756.2020.9045211","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing systems have demonstrated many advantages for popular classification problems with significantly less computational resources. We present in this paper the design, fabrication and training of a programmable neuromorphic circuit, which is based on printed electrolytegated field-effect transistor (EGFET). Based on printable neuron architecture involving several resistors and one transistor, the proposed circuit can realize multiply-add and activation functions. The functionality of the circuit, i.e. the weights of the neural network, can be set during a post-fabrication step in form of printing resistors to the crossbar. Besides the fabrication of a programmable neuron, we also provide a learning algorithm, tailored to the requirements of the technology and the proposed programmable neuron design, which is verified through simulations. The proposed neuromorphic circuit operates at 5V and occupies 385mm2 of area.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Neuromorphic computing systems have demonstrated many advantages for popular classification problems with significantly less computational resources. We present in this paper the design, fabrication and training of a programmable neuromorphic circuit, which is based on printed electrolytegated field-effect transistor (EGFET). Based on printable neuron architecture involving several resistors and one transistor, the proposed circuit can realize multiply-add and activation functions. The functionality of the circuit, i.e. the weights of the neural network, can be set during a post-fabrication step in form of printing resistors to the crossbar. Besides the fabrication of a programmable neuron, we also provide a learning algorithm, tailored to the requirements of the technology and the proposed programmable neuron design, which is verified through simulations. The proposed neuromorphic circuit operates at 5V and occupies 385mm2 of area.