{"title":"A 1.8 to 2.4-GHz 20mW digital-intensive RF sampling receiver with a noise-canceling bandpass low-noise amplifier in 90nm CMOS","authors":"Joonhee Lee, Jaewook Kim, Seonghwan Cho","doi":"10.1109/RFIC.2010.5477270","DOIUrl":null,"url":null,"abstract":"This paper presents a digital-intensive RF sampling receiver composed of a noise-canceling bandpass low-noise amplifier (LNA) and an RF analog-to-digital converter (ADC) for multi-band multi-mode wireless communication. The proposed LNA employs an on-chip transformer to combine the outputs of a common-gate and a common-source LNA to reduce the noise figure and enhance the linearity, while providing tunable bandpass filtering from 1.8 to 2.4-GHz. The RF ADC employs a time-based architecture that uses time-interleaved VCOs with 1st order noise shaping property, which benefits from enhanced time resolution of advanced CMOS process. A prototype chip implemented in 90 nm CMOS process has an area of 0.3 mm2 and achieves SNR of 50 dB for 1-MHz signal bandwidth at 1.8 to 2.4-GHz carrier frequency, while consuming 20 mW from 1.2 V supply.","PeriodicalId":269027,"journal":{"name":"2010 IEEE Radio Frequency Integrated Circuits Symposium","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2010.5477270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents a digital-intensive RF sampling receiver composed of a noise-canceling bandpass low-noise amplifier (LNA) and an RF analog-to-digital converter (ADC) for multi-band multi-mode wireless communication. The proposed LNA employs an on-chip transformer to combine the outputs of a common-gate and a common-source LNA to reduce the noise figure and enhance the linearity, while providing tunable bandpass filtering from 1.8 to 2.4-GHz. The RF ADC employs a time-based architecture that uses time-interleaved VCOs with 1st order noise shaping property, which benefits from enhanced time resolution of advanced CMOS process. A prototype chip implemented in 90 nm CMOS process has an area of 0.3 mm2 and achieves SNR of 50 dB for 1-MHz signal bandwidth at 1.8 to 2.4-GHz carrier frequency, while consuming 20 mW from 1.2 V supply.