Extraction of Myocardial Fibrosis from MR Using Fuzzy Soft Thresholding Algorithm

J. Kubícek, I. Bryjova, M. Penhaker, M. Augustynek
{"title":"Extraction of Myocardial Fibrosis from MR Using Fuzzy Soft Thresholding Algorithm","authors":"J. Kubícek, I. Bryjova, M. Penhaker, M. Augustynek","doi":"10.1109/IIAI-AAI.2016.143","DOIUrl":null,"url":null,"abstract":"The article deals with complex analysis of myocardial fibrosis. Myocardial fibrosis is standardly examined by MRI. MRI generates image data with higher resolution but data are monochromatic. Due to this fact it is complicated to recognize individual object from images. Furthermore there is not any clinical software which would be able to objectify examination in the sense of extraction area of myocardial fibrosis. The proposed algorithm allows transformation area of myocardial fibrosis to color scale and thus it creates mathematical model of fibrosis. Mathematical model of myocardial fibrosis conclusively recognize area and manifestation of observed object. The proposed segmentation procedure serves for effective feedback for clinicians in the context assessing diagnosis.","PeriodicalId":272739,"journal":{"name":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2016.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The article deals with complex analysis of myocardial fibrosis. Myocardial fibrosis is standardly examined by MRI. MRI generates image data with higher resolution but data are monochromatic. Due to this fact it is complicated to recognize individual object from images. Furthermore there is not any clinical software which would be able to objectify examination in the sense of extraction area of myocardial fibrosis. The proposed algorithm allows transformation area of myocardial fibrosis to color scale and thus it creates mathematical model of fibrosis. Mathematical model of myocardial fibrosis conclusively recognize area and manifestation of observed object. The proposed segmentation procedure serves for effective feedback for clinicians in the context assessing diagnosis.
基于模糊软阈值算法的MR心肌纤维化提取
本文讨论了心肌纤维化的复杂分析。心肌纤维化通过MRI进行标准检查。MRI生成的图像数据具有较高的分辨率,但数据是单色的。由于这个事实,从图像中识别单个物体是复杂的。此外,目前还没有一种临床软件能够在心肌纤维化提取区域意义上客观化检查。该算法允许将心肌纤维化区域转换为彩色尺度,从而建立心肌纤维化的数学模型。心肌纤维化的数学模型能较好地识别观察对象的面积和表现。所提出的分割程序为临床医生在评估诊断的背景下提供有效的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信