Signal to noise ratio simulation of lake water color monitoring oriented satellite remote sensing system

Jia Tian, Bin Peng, Jing Wang, Xiang Li
{"title":"Signal to noise ratio simulation of lake water color monitoring oriented satellite remote sensing system","authors":"Jia Tian, Bin Peng, Jing Wang, Xiang Li","doi":"10.1117/12.910369","DOIUrl":null,"url":null,"abstract":"Signal to noise ratio (SNR) is of great significance to the satellite remote sensing system dedicated to the monitoring of lake water color. The technical requisites were set in this paper taking reference to the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), which was aboard on the SeaStar. We simulated radiative transfer process from water-leaving radiance to apparent radiance on the top of atmosphere using 6S model, and calculated SNR based on the Equivalent Electron Theory. Our results showed that SNR in bands less than 500 nm was too low to meet the demand. Time Delay Integration (TDI) was essential in these bands. However, in bands greater than 500 nm, the SNR was higher enough (greater than 400), indicating there was still much potential to improve the spatial or spectral resolution in these bands.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.910369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signal to noise ratio (SNR) is of great significance to the satellite remote sensing system dedicated to the monitoring of lake water color. The technical requisites were set in this paper taking reference to the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), which was aboard on the SeaStar. We simulated radiative transfer process from water-leaving radiance to apparent radiance on the top of atmosphere using 6S model, and calculated SNR based on the Equivalent Electron Theory. Our results showed that SNR in bands less than 500 nm was too low to meet the demand. Time Delay Integration (TDI) was essential in these bands. However, in bands greater than 500 nm, the SNR was higher enough (greater than 400), indicating there was still much potential to improve the spatial or spectral resolution in these bands.
面向湖泊水色监测的卫星遥感系统信噪比仿真
信噪比(SNR)对湖泊水色监测卫星遥感系统具有重要意义。本文以海星上搭载的海视宽视场传感器(SeaWiFS)为参考,确定了技术要求。利用6S模型模拟了大气顶部从离水辐射到视辐射的辐射传递过程,并基于等效电子理论计算了信噪比。结果表明,小于500 nm波段的信噪比太低,无法满足需求。在这些频段中,时延集成(TDI)是必不可少的。然而,在大于500 nm的波段,信噪比足够高(大于400),表明这些波段的空间或光谱分辨率仍有很大的提高潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信