T. I. Amosa, P. Sebastian, L. I. Izhar, O. Ibrahim
{"title":"Investigating the Impact of Illumination and Viewpoint Variations on Transformer-based Person Re-Identification","authors":"T. I. Amosa, P. Sebastian, L. I. Izhar, O. Ibrahim","doi":"10.1109/ICFTSC57269.2022.10039913","DOIUrl":null,"url":null,"abstract":"Variations in visual factors such as illumination, viewpoint, resolution, background, pose, and so on are commonly regarded as significant issues in object re-identification (re-ID). Despite widespread recognition of their importance in determining the performance of an object re-ID model, not enough attention is paid to how these factors affect re-ID systems. One of the major impediments to investigating how these factors affect the performance of re-ID models is the lack of datasets with unbiased distribution of these difficult visual conditions. To make up for the lack of large-scale datasets with a balanced distribution of such photometric and geometric transforms, recent studies suggest using game engines to generate synthetic datasets. This study proposes a quantitative investigation of the impact of two critical visual factors: illumination and Tranfomer-based re-ID models on synthetic dataset.","PeriodicalId":386462,"journal":{"name":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFTSC57269.2022.10039913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Variations in visual factors such as illumination, viewpoint, resolution, background, pose, and so on are commonly regarded as significant issues in object re-identification (re-ID). Despite widespread recognition of their importance in determining the performance of an object re-ID model, not enough attention is paid to how these factors affect re-ID systems. One of the major impediments to investigating how these factors affect the performance of re-ID models is the lack of datasets with unbiased distribution of these difficult visual conditions. To make up for the lack of large-scale datasets with a balanced distribution of such photometric and geometric transforms, recent studies suggest using game engines to generate synthetic datasets. This study proposes a quantitative investigation of the impact of two critical visual factors: illumination and Tranfomer-based re-ID models on synthetic dataset.