Artificial Intelligence for Automatic Classification of Unintentional Electromagnetic Interference in Air Traffic Control Communications

P. Eliardsson, P. Stenumgaard
{"title":"Artificial Intelligence for Automatic Classification of Unintentional Electromagnetic Interference in Air Traffic Control Communications","authors":"P. Eliardsson, P. Stenumgaard","doi":"10.1109/EMCEurope.2019.8872082","DOIUrl":null,"url":null,"abstract":"The rapidly increase of wireless systems in safety- and security applications calls for more automatic monitoring of electromagnetic interference in the vicinity of critical applications. For efficiency reasons, such automatic monitoring techniques need to be complemented with methods for automatic analyses and classification of the collected interference data. In this paper, we show the possibility of using artificial intelligence (AI) in the form of machine learning (ML) to automatically identify and classify interference signals out of the total measured electromagnetic environment. We exemplify how a k-nearest neighbors (k-NN) algorithm could be used to automatically identify and classify different kinds of interference signals from intended transmitters in air-traffic control communications. The results are also an example of the potential of using AI-methods in Electromagnetic Compatibility (EMC) applications.","PeriodicalId":225005,"journal":{"name":"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope.2019.8872082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The rapidly increase of wireless systems in safety- and security applications calls for more automatic monitoring of electromagnetic interference in the vicinity of critical applications. For efficiency reasons, such automatic monitoring techniques need to be complemented with methods for automatic analyses and classification of the collected interference data. In this paper, we show the possibility of using artificial intelligence (AI) in the form of machine learning (ML) to automatically identify and classify interference signals out of the total measured electromagnetic environment. We exemplify how a k-nearest neighbors (k-NN) algorithm could be used to automatically identify and classify different kinds of interference signals from intended transmitters in air-traffic control communications. The results are also an example of the potential of using AI-methods in Electromagnetic Compatibility (EMC) applications.
空中交通管制通信中无意电磁干扰的人工智能自动分类
无线系统在安全和安保应用中的迅速增加,要求对关键应用附近的电磁干扰进行更多的自动监测。为了提高效率,这种自动监测技术需要辅以对收集到的干扰数据进行自动分析和分类的方法。在本文中,我们展示了以机器学习(ML)的形式使用人工智能(AI)来自动识别和分类总的测量电磁环境中的干扰信号的可能性。我们举例说明了如何使用k近邻(k-NN)算法自动识别和分类来自空中交通管制通信中预期发射机的不同类型的干扰信号。该结果也是在电磁兼容性(EMC)应用中使用人工智能方法的潜力的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信