Classification of LHC beam loss spikes using Support Vector Machines

G. Valentino, R. Assmann, R. Bruce, Nicholas Sammut
{"title":"Classification of LHC beam loss spikes using Support Vector Machines","authors":"G. Valentino, R. Assmann, R. Bruce, Nicholas Sammut","doi":"10.1109/SAMI.2012.6208988","DOIUrl":null,"url":null,"abstract":"The CERN Large Hadron Collider's (LHC) collimation system is the most complex beam cleaning system ever designed. It requires frequent setups to determine the beam centres and beam sizes at the 86 collimator positions. A collimator jaw is aligned to the beam halo when a clear beam loss spike is detected on a Beam Loss Monitor (BLM) downstream of the collimator. This paper presents a technique for identifying such clear loss spikes with the aid of Support Vector Machines. The training data was gathered from setups held during the first three months of the 2011 LHC run, and the model was tested with data from a machine development period.","PeriodicalId":158731,"journal":{"name":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2012.6208988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The CERN Large Hadron Collider's (LHC) collimation system is the most complex beam cleaning system ever designed. It requires frequent setups to determine the beam centres and beam sizes at the 86 collimator positions. A collimator jaw is aligned to the beam halo when a clear beam loss spike is detected on a Beam Loss Monitor (BLM) downstream of the collimator. This paper presents a technique for identifying such clear loss spikes with the aid of Support Vector Machines. The training data was gathered from setups held during the first three months of the 2011 LHC run, and the model was tested with data from a machine development period.
基于支持向量机的LHC波束损耗尖峰分类
欧洲核子研究中心的大型强子对撞机(LHC)准直系统是有史以来设计的最复杂的光束清洗系统。它需要频繁的设置来确定86个准直器位置的光束中心和光束大小。当在准直器下游的光束损耗监视器(BLM)上检测到明显的光束损耗尖峰时,准直器颚与光束晕对齐。本文提出了一种利用支持向量机识别这种明显损失尖峰的技术。训练数据是从2011年LHC运行的前三个月收集的,该模型用机器开发期间的数据进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信