Safe AI for CPS (Invited Paper)

Nathan Fulton, André Platzer
{"title":"Safe AI for CPS (Invited Paper)","authors":"Nathan Fulton, André Platzer","doi":"10.1109/TEST.2018.8624774","DOIUrl":null,"url":null,"abstract":"Autonomous cyber-physical systems-such as self-driving cars and autonomous drones-often leverage artificial intelligence and machine learning algorithms to act well in open environments. Although testing plays an important role in ensuring safety and robustness, modern autonomous systems have grown so complex that achieving safety via testing alone is intractable. Formal verification reduces this testing burden by ruling out large classes of errant behavior at design time. This paper reviews recent work toward developing formal methods for cyber-physical systems that use AI for planning and control by combining the rigor of formal proofs with the flexibility of reinforcement learning.","PeriodicalId":219297,"journal":{"name":"2018 IEEE International Test Conference (ITC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2018.8624774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Autonomous cyber-physical systems-such as self-driving cars and autonomous drones-often leverage artificial intelligence and machine learning algorithms to act well in open environments. Although testing plays an important role in ensuring safety and robustness, modern autonomous systems have grown so complex that achieving safety via testing alone is intractable. Formal verification reduces this testing burden by ruling out large classes of errant behavior at design time. This paper reviews recent work toward developing formal methods for cyber-physical systems that use AI for planning and control by combining the rigor of formal proofs with the flexibility of reinforcement learning.
CPS安全人工智能(邀请文件)
自主网络物理系统——如自动驾驶汽车和自动无人机——通常利用人工智能和机器学习算法在开放环境中表现良好。尽管测试在确保安全性和稳健性方面发挥着重要作用,但现代自动驾驶系统已经变得如此复杂,仅通过测试来实现安全是非常棘手的。通过在设计时排除大量的错误行为,正式验证减少了这种测试负担。本文回顾了最近为网络物理系统开发形式化方法的工作,该系统通过将形式化证明的严谨性与强化学习的灵活性相结合,使用人工智能进行规划和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信