A MapReduce framework implementation for Network-on-Chip platforms

Konstantinos Gyftakis, Iraklis Anagnostopoulos, D. Soudris, D. Reisis
{"title":"A MapReduce framework implementation for Network-on-Chip platforms","authors":"Konstantinos Gyftakis, Iraklis Anagnostopoulos, D. Soudris, D. Reisis","doi":"10.1109/ICECS.2014.7049936","DOIUrl":null,"url":null,"abstract":"All facets of society are generating increasing amounts of data confirming the term big data for modern applications. The next generation of embedded systems will be dominated by such smart applications offering a wide range of communication services. Driven also by hardware changes and the adoption of the many-core architectural template, a better resource management scheme is required. MapReduce is a programming model capable of processing large data sets with a parallel distributed algorithm using a large number of processing nodes. In this paper, we present a MapReduce framework for an embedded many-core Network-on-Chip platform with distributed shared memory characteristics. The proposed framework, which supports bare-metal systems, provides a scalable solution for data processing in a many-core system, while fully utilizing the platform's characteristics and achieving application speedup.","PeriodicalId":133747,"journal":{"name":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2014.7049936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

All facets of society are generating increasing amounts of data confirming the term big data for modern applications. The next generation of embedded systems will be dominated by such smart applications offering a wide range of communication services. Driven also by hardware changes and the adoption of the many-core architectural template, a better resource management scheme is required. MapReduce is a programming model capable of processing large data sets with a parallel distributed algorithm using a large number of processing nodes. In this paper, we present a MapReduce framework for an embedded many-core Network-on-Chip platform with distributed shared memory characteristics. The proposed framework, which supports bare-metal systems, provides a scalable solution for data processing in a many-core system, while fully utilizing the platform's characteristics and achieving application speedup.
一个用于片上网络平台的MapReduce框架实现
社会的各个方面都在产生越来越多的数据,这证实了现代应用中“大数据”一词的存在。下一代嵌入式系统将由这种提供广泛通信服务的智能应用程序主导。在硬件变化和多核架构模板采用的推动下,需要更好的资源管理方案。MapReduce是一种编程模型,能够使用大量处理节点,使用并行分布式算法处理大型数据集。在本文中,我们提出了一个具有分布式共享内存特性的嵌入式多核片上网络平台的MapReduce框架。该框架支持裸机系统,为多核系统中的数据处理提供了可扩展的解决方案,同时充分利用了平台的特点并实现了应用加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信