Identification Method for LVRT Control Parameters of Type-3 wind turbine Based on Short-Circuit Fault Frequency Model

Haohan Cui, P. Chao, Xiao-dong Cui, Xinyuan Liu, Weixin Li
{"title":"Identification Method for LVRT Control Parameters of Type-3 wind turbine Based on Short-Circuit Fault Frequency Model","authors":"Haohan Cui, P. Chao, Xiao-dong Cui, Xinyuan Liu, Weixin Li","doi":"10.1109/CIEEC58067.2023.10166085","DOIUrl":null,"url":null,"abstract":"Accurately modeling the low voltage ride through (LVRT) fault characteristics of type-3 wind turbine is crucial for ensuring the safety and stability of high-proportion new energy power systems. However, identifying the controller parameters of the main external characteristics of type-3 wind turbine presents a significant engineering challenge, given the black box of manufacturer converter controller parameters. Existing identification methods have several limitations, including low identification accuracy and unrealistic identification scenarios. This paper proposes a new step identification method based on the short-circuit fault frequency model. The LVRT control strategy parameters are identified based on the output dynamic characteristics of type-3 wind turbine and the generalized LVRT control strategy. The short-circuit fault frequency model proposed in this paper is used to identify the controller parameters. Finally, the accuracy of the proposed method is verified by simulation examples. The results indicate that the proposed method has high accuracy and is suitable for practical engineering applications.","PeriodicalId":185921,"journal":{"name":"2023 IEEE 6th International Electrical and Energy Conference (CIEEC)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Electrical and Energy Conference (CIEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEEC58067.2023.10166085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately modeling the low voltage ride through (LVRT) fault characteristics of type-3 wind turbine is crucial for ensuring the safety and stability of high-proportion new energy power systems. However, identifying the controller parameters of the main external characteristics of type-3 wind turbine presents a significant engineering challenge, given the black box of manufacturer converter controller parameters. Existing identification methods have several limitations, including low identification accuracy and unrealistic identification scenarios. This paper proposes a new step identification method based on the short-circuit fault frequency model. The LVRT control strategy parameters are identified based on the output dynamic characteristics of type-3 wind turbine and the generalized LVRT control strategy. The short-circuit fault frequency model proposed in this paper is used to identify the controller parameters. Finally, the accuracy of the proposed method is verified by simulation examples. The results indicate that the proposed method has high accuracy and is suitable for practical engineering applications.
基于短路故障频率模型的3型风力机LVRT控制参数辨识方法
准确建模3型风电机组低电压穿越(LVRT)故障特征对于保证高比例新能源电力系统的安全稳定至关重要。然而,考虑到制造商变流器控制器参数的黑盒子,确定3型风力机主要外部特性的控制器参数是一项重大的工程挑战。现有的识别方法存在识别精度低、识别场景不现实等局限性。提出了一种基于短路故障频率模型的阶跃识别方法。基于3型风力机输出动态特性和广义LVRT控制策略,确定了LVRT控制策略参数。采用本文提出的短路故障频率模型对控制器参数进行辨识。最后,通过仿真算例验证了所提方法的准确性。结果表明,该方法具有较高的精度,适合实际工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信