Efficient Semantic Enrichment Process for Human Trajectories in Surveillance Videos

Fang Bao, Xiaoyu Sun, Weilan Luo, Xintao Liu, G. Ji, Bin Zhao
{"title":"Efficient Semantic Enrichment Process for Human Trajectories in Surveillance Videos","authors":"Fang Bao, Xiaoyu Sun, Weilan Luo, Xintao Liu, G. Ji, Bin Zhao","doi":"10.1109/BESC48373.2019.8963491","DOIUrl":null,"url":null,"abstract":"Nowadays, it becomes very convenient to collect large-scale videos that record trajectories of human mobility behavior in various situations in cities, due to the increasing availability of surveillance camera. Obviously, surveillance videos became a new data source of spatiotemporal trajectories. However, a typical trajectory semantic enrichment process receives as input spatiotemporal trajectories. The process methods cannot be applied to video data directly. In this paper, we propose a semantic enrichment process framework for human trajectories in surveillance videos. It includes trajectory identification in videos, trajectory transformation, sub-traj ectory segmentation, segment annotation. We can derive semantic trajectories from surveillance videos through the four phases. Having observed the common occurrence of the similarities between individual trajectories, we propose a grid index-based method to search similar pre-annotated sub-trajectory segments in pixel space for retrieving semantic trajectories in order to enhance the performance of this approach. Finally, we demonstrate the effectiveness and efficiency of our proposed approach by using a real world data set.","PeriodicalId":190867,"journal":{"name":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC48373.2019.8963491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, it becomes very convenient to collect large-scale videos that record trajectories of human mobility behavior in various situations in cities, due to the increasing availability of surveillance camera. Obviously, surveillance videos became a new data source of spatiotemporal trajectories. However, a typical trajectory semantic enrichment process receives as input spatiotemporal trajectories. The process methods cannot be applied to video data directly. In this paper, we propose a semantic enrichment process framework for human trajectories in surveillance videos. It includes trajectory identification in videos, trajectory transformation, sub-traj ectory segmentation, segment annotation. We can derive semantic trajectories from surveillance videos through the four phases. Having observed the common occurrence of the similarities between individual trajectories, we propose a grid index-based method to search similar pre-annotated sub-trajectory segments in pixel space for retrieving semantic trajectories in order to enhance the performance of this approach. Finally, we demonstrate the effectiveness and efficiency of our proposed approach by using a real world data set.
监控视频中人体轨迹的高效语义富集过程
如今,由于监控摄像头的日益普及,收集大规模视频记录人类在城市各种情况下的移动行为轨迹变得非常方便。显然,监控视频成为一种新的时空轨迹数据来源。然而,一个典型的轨迹语义富集过程接收作为输入的时空轨迹。这些处理方法不能直接应用于视频数据。在本文中,我们提出了一个用于监控视频中人类轨迹的语义丰富过程框架。它包括视频中的轨迹识别、轨迹变换、子轨迹分割、片段标注。我们可以通过这四个阶段从监控视频中推导出语义轨迹。观察到单个轨迹之间普遍存在的相似性,我们提出了一种基于网格索引的方法,在像素空间中搜索相似的预标注子轨迹段来检索语义轨迹,以提高该方法的性能。最后,我们通过使用真实世界的数据集来证明我们提出的方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信